探索Tencent Cloud VectorDB:强大的多维向量数据存储与检索
在当今的数据驱动世界中,处理和分析多维向量数据变得至关重要。腾讯云提供的VectorDB是一种企业级分布式数据库服务,专为存储、检索和分析多维向量数据而设计。在这篇文章中,我们将展示如何使用Tencent Cloud VectorDB结合SelfQueryRetriever进行数据检索。
引言
本文将指导您通过示例创建一个Tencent VectorDB实例,并演示如何设置SelfQueryRetriever以高效检索存储在数据库中的电影摘要数据。我们将提供完整的代码示例,并讨论配置和使用中的潜在挑战。
主要内容
1. 创建Tencent VectorDB实例并插入数据
首先,我们需要创建Tencent VectorDB实例,并向其中插入一些电影摘要数据。为此,我们需要安装相关的Python包:
%pip install --upgrade --quiet tcvectordb langchain-openai tiktoken lark
配置必要的API密钥:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
接着,创建和配置VectorDB:
from langchain_community.vectorstores.tencentvectordb import (
ConnectionParams,
MetaField,
TencentVectorDB,
)
from langchain_core.documents import Document
from tcvectordb.model.enum import FieldType
# 元数据字段配置
meta_fields = [
MetaField(name="year",