Jump Test

  • Jump test

    We consoder a function
    \[ f_x=\frac{1}{\varepsilon^2 +(x-x_0)^2} \]
    Integrate of this function is
    \[ f=-\frac{1}{\varepsilon}arctan( \frac{x_0-x}{\varepsilon}) \]
    A good idear for tcest Jang's equation is : choice a very small number \(\delta\)
    \[ \begin{align} \delta f &= -\frac{\delta}{\varepsilon}arctan( \frac{x_0-x}{\varepsilon}) \\ \delta \varepsilon f &=-\delta arctran( \frac{x_0-x}{\varepsilon} ) \end{align} \]

    接着要讨边界条件的设置问题:
    对于内侧的 \(\displaystyle \frac{f_x }{ \sqrt{ 1+f_x ^2}}\) 的边界,使用的是 Newmann 边界, 给出的 $\displaystyle \phi^{-2} f_x=\frac{1}{\varepsilon^2 +(x-x_0)^2} $,
    所以Newmann 边界条件是这样给出来的
    \[\boxed{ f_x= \frac{1}{\varepsilon^2 +(x-x_0)^2} \phi^2} \]
    对于外侧的,使用的 Dirichlet 边界条件,
    \[ \begin{align} \kappa(r)&=\frac{\frac{f_r}{\phi ^2} }{\sqrt{\frac{f_r^2}{\phi ^4}+1}}\\ H(r)&=-\frac{1}{r^2 \phi^6 }( r^2 \phi^4 \frac{\frac{f_r}{\phi ^2} }{\sqrt{\frac{f_r^2}{\phi ^4}+1}})_{,r}\\ &= -\frac{1}{r^2 \phi^6 }( r^2\phi^4\kappa(r))_{,r} \\ \end{align} \]
    实际上使用的是
    \[ \boxed{ r^2\phi^4(r) \kappa(r)} \]
    的边界值函数。

转载于:https://www.cnblogs.com/yuewen-chen/p/11602492.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值