Nash 嵌入定理


流形的度量改变意味着什么?
1.首先来看最简单的例子: \(S^2:\) 将球面嵌入到 \(\mathbb{R}^3\)里面, 半径是 \(r\), 我们取标准球面坐标 \((\theta,\phi)\), 球面的度量是 \(ds^2=r^2(d\theta^2+sin\theta d\phi^2)\) ,改变度量 ,比如说 \(r\to 0\), 形状会缩小, 最终坍缩成为一个点。

  1. 反之,任何一个黎曼流形 \((M,g)\) 都能等距嵌入到一个 \(\mathbb{R}^n\) 里面,这就是 Nash 嵌入定理。
    _____________________________________________________________________________________________

    Nash–Kuiper theorem (\(C^1\)embedding theorem)
    Let \((M,g)\) be a Riemannian manifold and$ f: M^m \to \mathbb{R}^n$ a short \(C^{\infty}\) -embedding (or immersion) into Euclidean space \(\mathbb{R}^n\) , where \(n ≥ m+1\). Then for arbitrary \(\epsilon >0\) there is an embedding (or immersion) $: f_\epsilon: M^m \to \mathbb{R}^n $which is
  • (1)in class \(C^1\)
  • (2) isometric: \[ \displaystyle g(u,v)= \langle df_\epsilon(u), df_\epsilon(v) \rangle, \forall u,v \in T_x M \]

转载于:https://www.cnblogs.com/yuewen-chen/articles/9538196.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值