可见光的波长从紫光4000
A
∘
\stackrel{\circ}{A}
A∘到红光7000
A
∘
\stackrel{\circ}{A}
A∘
A
∘
\stackrel{\circ}{A}
A∘这个单位读“埃”,一埃是10-10m,这个单位名称是为纪念瑞典物理学家埃斯特朗而定的.
因为分子的直径大概在10-10m这个数量级上,所以这个一个在原子物理量子物理领域很常用的物理单位。
物理竞赛
第一个物理学家是亚里士多德
不以保送为最终目的的物竞都是耍流氓
这里注意
θ
\theta
θ是和
z
z
z轴的家教,而不是和赤道面的夹角。
质点
有些情况下物体的形状有很重要的作用,比如在研究空气阻力的时候.然而,多数的我们接触到 的物理问题中,物体的形状和大小都不重要,所以就可以把物体看成具有一定质量的几何点,称 为质点.质点是实际物体的理想化模型.
参考系
有了质点我们还不能直接定义机械运动,为了正确的确定物体位置及其变化,必须事先选取另外 一个假定为不动的物体作为参照才有意义.这个选来作为参照的物体叫做参照物.为了定量的描 述物体的运动,还需要在参照系上建立坐标系,来描绘空间中的位置,(有时再加上时间).作为 研究物体运动时所参照的物体(批次不做相对运动的物体群),称为参考系.
坐标系
坐标系实质上是由实物构成的参考系的一个数学的抽象.最常用的坐标系就是直角坐标系 O- x y z xyz xyz ;有时候也是用极坐标系O- r ρ φ r\rho\varphi rρφ
矢量
矢量是既有大小又有方向的物理量
矢量的描述:
最简单的描述方法:
分量法。取直角坐标系:二维空间中显然是(
x
x
x,
y
y
y ) ,三维空间中显然是(
x
x
x,
y
y
y ,
z
z
z ) ,四维空间显然是(
x
x
x,
y
y
y ,
z
z
z ,
t
t
t )
还有什么办法?极坐标和球坐标表示。本质上还是等价于分量描述:
极坐标:平面上一个点,点到原点的连线的长度是
ρ
\rho
ρ ,连线与x轴的夹角是
θ
\theta
θ 。
球坐标:三维空间中一个点,点到原点的连线的长度是
ρ
\rho
ρ ,连线与z 轴的夹角是
θ
\theta
θ ,连线在 xy 平面的投影与x轴的夹角是
φ
\varphi
φ 。