高中物理竞赛【一阶】运动学、静力学部分【第1讲运动学基础(上)】

本文介绍了物理竞赛的基础概念,包括质点、参考系、坐标系和矢量的描述与运算,探讨了可见光波长范围及单位埃的重要性,并提到了亚里士多德作为首个物理学家的历史地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可见光的波长从紫光4000 A ∘ \stackrel{\circ}{A} A到红光7000 A ∘ \stackrel{\circ}{A} A
A ∘ \stackrel{\circ}{A} A这个单位读“埃”,一埃是10-10m,这个单位名称是为纪念瑞典物理学家埃斯特朗而定的.
因为分子的直径大概在10-10m这个数量级上,所以这个一个在原子物理量子物理领域很常用的物理单位。

物理竞赛

第一个物理学家是亚里士多德
不以保送为最终目的的物竞都是耍流氓

在这里插入图片描述
这里注意 θ \theta θ是和 z z z轴的家教,而不是和赤道面的夹角。

质点

有些情况下物体的形状有很重要的作用,比如在研究空气阻力的时候.然而,多数的我们接触到 的物理问题中,物体的形状和大小都不重要,所以就可以把物体看成具有一定质量的几何点,称 为质点.质点是实际物体的理想化模型.

参考系

有了质点我们还不能直接定义机械运动,为了正确的确定物体位置及其变化,必须事先选取另外 一个假定为不动的物体作为参照才有意义.这个选来作为参照的物体叫做参照物.为了定量的描 述物体的运动,还需要在参照系上建立坐标系,来描绘空间中的位置,(有时再加上时间).作为 研究物体运动时所参照的物体(批次不做相对运动的物体群),称为参考系.

坐标系

坐标系实质上是由实物构成的参考系的一个数学的抽象.最常用的坐标系就是直角坐标系 O- x y z xyz xyz ;有时候也是用极坐标系O- r ρ φ r\rho\varphi rρφ

矢量

矢量是既有大小又有方向的物理量

矢量的描述:

最简单的描述方法:
分量法。取直角坐标系:二维空间中显然是( x x x, y y y ) ,三维空间中显然是( x x x, y y y , z z z ) ,四维空间显然是( x x x, y y y , z z z , t t t )

 还有什么办法?极坐标和球坐标表示。本质上还是等价于分量描述: 

极坐标:平面上一个点,点到原点的连线的长度是
ρ \rho ρ ,连线与x轴的夹角是 θ \theta θ

球坐标:三维空间中一个点,点到原点的连线的长度是
ρ \rho ρ ,连线与z 轴的夹角是 θ \theta θ ,连线在 xy 平面的投影与x轴的夹角是 φ \varphi φ

矢量的运算

在这里插入图片描述

矢量的外积

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值