题目描述
司令部的将军们打算在 N × M N\times M N×M 的网格地图上部署他们的炮兵部队。
一个 N × M N\times M N×M 的地图由 N N N 行 M M M 列组成,地图的每一格可能是山地(用 H \texttt{H} H 表示),也可能是平原(用 P \texttt{P} P 表示),如下图。
在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。
图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
输入格式
第一行包含两个由空格分割开的正整数,分别表示 N N N 和 M M M。
接下来的 N N N 行,每一行含有连续的 M M M 个字符,按顺序表示地图中每一行的数据。
输出格式
一行一个整数,表示最多能摆放的炮兵部队的数量。
样例输入 #1
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
样例输出 #1
6
提示
对于
100
%
100\%
100% 的数据,
N
≤
100
N\le 100
N≤100,
M
≤
10
M\le 10
M≤10,保证字符仅包含 p
与 h
。
分析
看到数据很小,题目比较难,得出做法:状压DP
输入高山平原的时候需要预处理,把地形转化为01并压缩到map数组里面。
然后枚举每一种可能的状态,并且判断是否为合法状态。判断的方法就是在s变量(用于计算间隔)等于0之前又遇到一个1那就是不合法。如果等于0的时候遇到一个1那就把s变为3。s是每次-1的。
判断合法的一行状态就可以累加tot,表示能用于DP的状态的数量,可以有效压缩数组空间,这样子在DP种就省去了判断是否合法这一过程。
然后开始DP。
我们设
f
[
i
]
[
l
]
[
k
]
f[i][l][k]
f[i][l][k]为第
i
i
i行有
l
l
l点贡献(放了
l
l
l个炮兵),上一行(
i
−
1
i-1
i−1行)有
k
k
k点贡献。
状态转移方程:
f
[
i
]
[
l
]
[
k
]
=
m
a
x
(
f
[
i
]
[
l
]
[
k
]
,
f
[
i
−
1
]
[
k
]
[
j
]
+
n
u
m
[
l
]
)
;
f[i][l][k]=max(f[i][l][k],f[i-1][k][j]+num[l]);
f[i][l][k]=max(f[i][l][k],f[i−1][k][j]+num[l]);
这里其实 j j j表示i-2行的贡献,所以也要枚举1层循环。
U
p
d
a
t
e
:
2022.8.16
Update:2022.8.16
Update:2022.8.16
今天讲课有所启发,对于每一行的判断,因为可能影响到上两行,所以其实就是判断行与行之间的“咬合”关系,这个就是用“&”来实现的,每一层循环种判断的“咬合”并不相同,因为只需要考虑那一行被谁影响就行,毕竟这个涉及到上行和上上行。
上代码
U
p
d
a
t
e
:
2022.8.16
Update:2022.8.16
Update:2022.8.16
更改码风,少了一点括号。。。
之前:107行代码47行括号。。。别问我为什么那么热爱括号。。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,mp[1010],a[1<<11],num[1<<11],tot;
bool check(int x)
{
int s=0;
while(x)
{
if((x&1)&&s!=0) return false;
if(x&1) s=3;
if(s!=0) s--;
x>>=1;
}
return true;
}
int bits(int x)
{
int s=0;
for(int i=x;i>0;i-=i&(-i)) s++;
return s;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
char c;
cin>>c;
if(c=='P') mp[i]=(mp[i]<<1);
else mp[i]=(mp[i]<<1)+1;
}
}
for(int i=0;i<=(1<<m)-1;i++)//所有合法状态
{
if(check(i))
{
a[++tot]=i;
num[tot]=bits(i);
}
}
int f[110][tot+1][tot+1];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=tot;j++)//枚举所有可行状态
{
if((a[j]&mp[i-2])==0)//判断是否 "咬合"
{
for(int k=1;k<=tot;k++)
{
if((a[j]&a[k])==0&&(a[k]&mp[i-1])==0)//“咬合”
{
for(int l=1;l<=tot;l++)
{
if((a[j]&a[l])==0&&(a[k]&a[l])==0&&(a[l]&mp[i])==0)
{
f[i][l][k]=max(f[i][l][k],f[i-1][k][j]+num[l]);
}
}
}
}
}
}
}
int ans=0;
for(int i=1;i<=tot;i++)
{
for(int j=1;j<=tot;j++)
{
ans=max(ans,f[n][i][j]);//最后一行最大的答案
}
}
cout<<ans;
return 0;
}
括号永远滴神!!!