Description
地鼠家族面临着一个新的威胁——猎食者。
地鼠家族一共有N个地鼠和M个鼠洞,每个都位于不同的(x, y)坐标中。假如有地鼠在发觉危险以后s秒内都没有回到鼠洞里的话,就可能成为老鹰的食物。当然了,一个鼠洞只能拯救一只地鼠的命运,所有地鼠都以相等的速度v移动。地鼠家族需要设计一种策略,使得老鹰来时,易受攻击的地鼠数量最少。
Input
本题有多组数据。第1行为测试数据组数T(T<=50)。
对于每组数据,第一行4个整数n, m, s和v(n, m <= 100)。以后n行为地鼠的坐标,以后m行为鼠洞的坐标。距离的单位是m,时间的单位是s,速度的单位是m/s。
Output
对于每组数据输出一行,为易受攻击的地鼠的数量。
Sample Input
1
2 2 5 10
1.0 1.0
2.0 2.0
100.0 100.0
20.0 20.0
Sample Output
1
分析
先枚举所有的鼠洞和地鼠,算出距离,然后判断地鼠是否可以在规定时间内跑回鼠洞,可以的话就连边。
然后跑匈牙利算法(就是模板),求出最大匹配,然后用总的点数减去最大匹配,就是题目要求的答案。
注意有多组数据,记得数组清零。
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<cmath>
typedef long long ll;
using namespace std;
int t,n,m,s,v,link[100001],cover[100001],hd[100001],tot,ans;
double x[100001],y[100001],x1,y2;
struct node
{
int to,next;
}a[100001];
void add(int l,int r)
{
a[++tot]=(node){r,hd[l]};
hd[l]=tot;
}
bool find(int k)
{
for(int i=hd[k];i>0;i=a[i].next)
{
int j=a[i].to;
if(cover[j]==0)
{
cover[j]=1;
int q=link[j];
link[j]=k;
if(q==0||find(q))
{
return true;
}
link[j]=q;
}
}
return false;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n>>m>>s>>v;
for(int i=1;i<=n;i++)
{
cin>>x[i]>>y[i];
}
for(int i=1;i<=m;i++)
{
cin>>x1>>y2;
for(int j=1;j<=n;j++)
{
double dis=sqrt((x1-x[j])*(x1-x[j])+(y2-y[j])*(y2-y[j]));
if(dis<=s*v)
{
add(j,i);//用点连边而不是坐标
}
}
}
for(int i=1;i<=n;i++)
{
memset(cover,0,sizeof(cover));
find(i);
}
for(int i=1;i<=n;i++)
{
if(link[i]!=0)
{
ans++;
}
}
cout<<n-ans<<endl;
memset(link,0,sizeof(link));
memset(hd,0,sizeof(hd));
tot=0;
ans=0;
}
return 0;
}