分析
虽然我们有 S [ n ] = F [ n + 2 ] − 1 S[n]=F[n+2]-1 S[n]=F[n+2]−1,但本文不考虑此方法,我们想要得到更一般的方法。
仿照之前的思路,考虑1×3的矩阵
【
f
[
n
−
2
]
,
f
[
n
−
1
]
,
s
[
n
−
2
]
】
【f[n-2],f[n-1],s[n-2]】
【f[n−2],f[n−1],s[n−2]】,我们希望通过乘以一个3×3的矩阵A,得到1×3的矩阵:
【
f
[
n
−
1
]
,
f
[
n
]
,
s
[
n
−
1
]
】
=
【
f
[
n
−
1
]
,
f
[
n
−
1
]
+
f
[
n
−
2
]
,
s
[
n
−
2
]
+
f
[
n
−
1
]
】
【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】
【f[n−1],f[n],s[n−1]】=【f[n−1],f[n−1]+f[n−2],s[n−2]+f[n−1]】
容易得到这个3×3的矩阵是:
就可以套模板了。
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n;
const int mod=1000000007;
struct matrix
{
ll n,m;
ll f[20][20];
}st,A,B;
matrix operator *(matrix a,matrix b)
{
matrix c;
c.n=a.n;c.m=b.m;
for(int i=1;i<=c.n;i++)
{
for(int j=1;j<=c.m;j++)
{
c.f[i][j]=0;
}
}
for(int k=1;k<=a.m;k++)
{
for(int i=1;i<=a.n;i++)
{
for(int j=1;j<=b.m;j++)
{
c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[k][j]%mod)%mod;
}
}
}
return c;
}
void ksm(ll x)
{
x--;
A=st;
while(x)
{
if(x&1) A=A*st;
st=st*st;
x>>=1;
}
}
int main()
{
cin>>n;
st.n=3;st.m=3;
st.f[1][1]=0;st.f[1][2]=1;st.f[1][3]=0;
st.f[2][1]=1;st.f[2][2]=1;st.f[2][3]=1;
st.f[3][1]=0;st.f[3][2]=0;st.f[3][3]=1;
if(n==1)
{
cout<<1;
return 0;
}
else
{
B.n=1;B.m=3;
B.f[1][1]=1;B.f[1][2]=1;B.f[1][3]=1;
ksm(n-1);
B=B*A;
cout<<B.f[1][3];
}
return 0;
}