【gmoj3528】【7.16提高B组模拟赛T2】图书馆【DP】

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题目大意

给定n个点,m条边,每次只能从小的点走向大的点,问走过路径的最小方差。

分析

此处特别鸣谢Dr.Chen讲解思路非常详细,JACKMA提供的LaTeX公式推导。不想手打

看到方差就先想到方差公式。但是我们要对这个原始公式变形:
首先给出方差定义:
σ 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 \sigma^2=\frac{1}{n}\sum_{i=1}^n(x_i-\bar x)^2 σ2=n1i=1n(xixˉ)2
x ˉ \bar x xˉ 是平均数, x ˉ = 1 n ∑ i = 1 n x i \bar x=\frac{1}{n}\sum_{i=1}^nx_i xˉ=n1i=1nxi
然后考虑化简等号右边的式子。
原右式等于:
1 n ∑ i = 1 n x i 2 − 2 x i x ˉ + x ˉ 2 \frac{1}{n}\sum_{i=1}^nx_i^2-2x_i\bar x +\bar x^2 n1i=1nxi22xixˉ+xˉ2 1 n ( ∑ i = 1 n x i 2 − ∑ i = 1 n 2 x i x ˉ + ∑ i = 1 n x ˉ 2 ) \frac{1}{n}(\sum_{i=1}^nx_i^2-\sum_{i=1}^n2x_i\bar x +\sum_{i=1}^n\bar x^2) n1(i=1nxi2i=1n2xixˉ+i=1nxˉ2) 1 n ( ∑ i = 1 n x i 2 − 2 x ˉ ∑ i = 1 n x i + n x ˉ 2 ) \frac{1}{n}(\sum_{i=1}^nx_i^2-2\bar x\sum_{i=1}^nx_i + n\bar x^2) n1(i=1nxi22xˉi=1nxi+nxˉ2) 1 n ( ∑ i = 1 n x i 2 − 2 n x ˉ 2 + n x ˉ 2 ) \frac{1}{n}(\sum_{i=1}^nx_i^2-2n\bar x^2 + n\bar x^2) n1(i=1nxi22nxˉ2+nxˉ2) 1 n ( ∑ i = 1 n x i 2 − n x ˉ 2 ) \frac{1}{n}(\sum_{i=1}^nx_i^2-n\bar x^2) n1(i=1nxi2nxˉ2) 1 n ∑ i = 1 n x i 2 − x ˉ 2 \frac{1}{n}\sum_{i=1}^nx_i^2-\bar x^2 n1i=1nxi2xˉ2

现在我们得到了两个部分,一个是平方的和,一个是和的平方。
因为和的平方只要我们知道和就可以了,所以选择记录平方和。
f [ i , j , k ] f[i,j,k] f[i,j,k]表示走了i步,走到第j个点,路径权值和为k的总权值平方和。
然后分别枚举 i , j , k , l i,j,k,l i,j,k,l,表示从 l l l走到 j j j
那如何转移呢?
从走了第 i − 1 i-1 i1条路, l l l点, k − e [ l . d i s ] k-e[l.dis] ke[l.dis]边权的平方和转移过来。
转移方程:
f [ i ] [ j ] [ k ] = m i n ( f [ i ] [ j ] [ k ] , f [ i − 1 ] [ e [ l ] . t o ] [ k − e [ l ] . d i s ] + e [ l ] . d i s ∗ e [ l ] . d i s ) ; f[i][j][k]=min(f[i][j][k],f[i-1][e[l].to][k-e[l].dis]+e[l].dis*e[l].dis); f[i][j][k]=min(f[i][j][k],f[i1][e[l].to][ke[l].dis]+e[l].dise[l].dis);
最后统计答案需要用方差公式:平方和/点数-和的平方/点的平方

取最小值

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#include<cstring>
using namespace std;

struct lwx
{
	int to,next,dis;
}e[301];

int n,m,dis[100][100];
int f[25][55][1100];//严格按照陈博(即数据)范围开数组! 
/*设f[i,j,k]表示走了i步(最多20段),
走到d第j个点(最多50个点),
路径权值和为k(权值和最多会到1000)的总权值平方和*/ 
double ans;
int hd[301],tot;

void add(int x,int y,int z)
{
	e[++tot].to=y;
	e[tot].next=hd[x];
	e[tot].dis=z;
	hd[x]=tot;
}

int main()
{
	freopen("library.in","r",stdin);
	freopen("library.out","w",stdout);
	cin>>n>>m;
	for(int i=1;i<=100;i++)
	  for(int j=1;j<=100;j++)
	    dis[i][j]=2147483647;  
	for(int i=1;i<=m;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		add(y,x,z);//倒着存边才好往前递推
	}
	memset(f,0x3f,sizeof(f));
	f[0][1][0]=0;
	for(int i=1;i<=20;i++)//题目规定20 
	{
	    for(int j=1;j<=n;j++)
		{
			for(int l=hd[j];l>0;l=e[l].next)//l一定在j前面(只能从下往上走) 
			{
				for(int k=1;k<=1000;k++)//题目规定边权最多50,20*50=1000 
				{
					if(k>=e[l].dis)
					 f[i][j][k]=min(f[i][j][k],f[i-1][e[l].to][k-e[l].dis]+e[l].dis*e[l].dis);
				}
			}
		}	
	}
	ans=15112717773.0;
	for(int i=1;i<=20;i++)
	{
		for(int k=0;k<=1000;k++)
		{
			ans=min(ans,double(f[i][n][k])/i-(double(k*k))/(double(i*i)));
			/*f[i,n,k]记录的是平方和,k是权值和,i是点的数量。
			公式是:平方和/点数-和的平方/点的平方
			和的平方/点的平方也就是平均数的平方*/ 
		}
	}
	printf("%.4lf",ans); 
	return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值