【洛谷P3381】最小费用最大流【费用流】

题面

在这里插入图片描述

分析

本质上是网络流加上了一个花费值。

我们在网络流的分层时使用了BFS,在BFS上加上最小花费(边权),就会想到用SPFA,可以处理负权的情况,十分优秀。

就是先用SPFA跑关于费用的最短路,一边用一个flow数组记录一条路上的最小容量限制,记录前驱结点。然后从汇点回溯到源点,每条边的容量减去流量并处理反向边,统计答案就是每次 f l o w [ t ] flow[t] flow[t]的和,费用计算就显然了。

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int inf=1e9;

struct node
{
	int to,next,w,c;
}e[100010];

int n,m,s,t;
int tot=1,hd[100010];
int dis[5010],flow[5010],v[5010],pre[100010];
int mxflow,mncost;

void add(int x,int y,int w,int c)
{
	e[++tot]=(node){y,hd[x],w,c};
	hd[x]=tot;
}

bool spfa()
{
	queue<int> q;
	memset(dis,0x3f3f3f3f,sizeof(dis));
	memset(v,0,sizeof(v));
	dis[s]=0;
	q.push(s);
	v[s]=1;
	flow[s]=inf;
	while(!q.empty())
	{
		int x=q.front();
		q.pop(); 
		v[x]=0;
		for(int i=hd[x];i;i=e[i].next)
		{
			int t=e[i].to;
			if(dis[t]>dis[x]+e[i].c&&e[i].w)
			{
				dis[t]=dis[x]+e[i].c;
				flow[t]=min(flow[x],e[i].w);
				pre[t]=i;
				if(!v[t])
				{
					v[t]=1;
					q.push(t);
				}
			}
		}
	}
	return dis[t]!=1061109567;
}

void find()
{
	int x=t;
	while(x!=s)
	{
		int i=pre[x];
		e[i].w-=flow[t];
		e[i^1].w+=flow[t];
		x=e[i^1].to;
	}
	mxflow+=flow[t];
	mncost+=flow[t]*dis[t];
}

int main()
{
	cin>>n>>m>>s>>t;
	for(int i=1;i<=m;i++)
	{
		int x,y,w,c;
		scanf("%d%d%d%d",&x,&y,&w,&c);
		add(x,y,w,c);
		add(y,x,0,-c);
	}
	while(spfa())
	{
		find();
	}
	cout<<mxflow<<' '<<mncost;
	return 0;
 } 
洛谷 P1681 最大正方形II 是一个动态规划问题,要求给定一个由 '0' 和 '1' 组成的矩阵,找出其中最大的正方形,并输出其边长。 以下是一个 C++ 编写的解答示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maximalSquare(vector<vector<char>>& matrix) { int rows = matrix.size(); if (rows == 0) return 0; int cols = matrix[0].size(); vector<vector<int>> dp(rows + 1, vector<int>(cols + 1, 0)); int maxSide = 0; for (int i = 1; i <= rows; i++) { for (int j = 1; j <= cols; j++) { if (matrix[i-1][j-1] == '1') { dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1; maxSide = max(maxSide, dp[i][j]); } } } return maxSide * maxSide; } int main() { int n, m; cin >> n >> m; vector<vector<char>> matrix(n, vector<char>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> matrix[i][j]; } } cout << maximalSquare(matrix) << endl; return 0; } ``` 在上述代码中,我们首先定义了一个名为 `maximalSquare` 的函数,该函数接受一个二维字符矩阵 `matrix` 作为参数,返回最大正方形的边长。 在 `main` 函数中,我们首先从标准输入读取矩阵的行数和列数,并创建一个大小为 `n x m` 的二维字符矩阵。然后,我们按行读取矩阵的数据,并调用 `maximalSquare` 函数进行求解。最后,输出最大正方形的边长。 在动态规划的解法中,我们使用一个二维数组 `dp` 来记录以当前位置为右下角的最大正方形的边长。遍历矩阵中的每个元素,如果当前元素为 '1',则根据其左方、上方和左上方的最大正方形边长计算出当前位置的最大正方形边长,并更新 `dp` 数组和最大边长变量。 请注意,以上代码仅为示例,可能需要根据具体题目要求进行适当修改。同时,为了简化示例,未进行输入验证,请确保输入的矩阵符合题目要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值