【CF1846E】Rudolf and Snowflakes【数学】

在这里插入图片描述

分析

简单的version可以直接暴力枚举k判断。

难的version范围到了 1 0 18 10^{18} 1018 ,所以考虑更加数学的方法。

数据范围是n<=1e18,k>1

雪花中点的个数是 1 + k + k 2 + k 3 + . . . + k p 1+k+k^2+k^3+...+k^p 1+k+k2+k3+...+kp,根据数据范围,显然p的范围是p<=62

关键在于缩小k的范围,我们考虑从k的几次方开始枚举,发现如下事实:

  1. 如果我们直接存入最小的值是 1 + k + k 2 1+k+k^2 1+k+k2,那么k的范围是k<1e9,此时时间复杂度是 O ( 1 e 9 ∗ 62 ) O(1e9*62) O(1e962)

  2. 如果我们直接存入最小的值是 1 + k + k 2 + k 3 1+k+k^2+k^3 1+k+k2+k3,那么k的范围是k<1e6,时间复杂度是 O ( 1 e 6 ∗ 62 ) O(1e6*62) O(1e662)

所以在大于三次方的情况下依然小于n的数最多也只能是1000000个,可以枚举,对于二次方的情况,只需要对于剩余的数特殊处理就行。
注意到这是一个二次方程,特判一下 1 + k + k 2 = n 1+k+k^2=n 1+k+k2=n,是否可以解出一个正整数k,且k大于1即可.
具体解法上,可以利用sqrt自动下取整的特点。

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring> 
#include<set>
#include<cmath>
using namespace std;
typedef long long ll;

set<ll> s;
ll t,n;

bool check(ll x)
{
	if(x<=3) return false;
	ll q=sqrt(x);
	if(q*(q+1)==x) return true;
	else return false;
}

int main() 
{
	for(ll i=2;i<=1000000;i++)
	{
		ll x=i*i*i+i*i+i+1;
		while(x<=1e18)
		{
			s.insert(x);
			if(x<=1.0*(1e18-1)/i) x=x*i+1;
			else break;
		}
	}
	cin>>t;
	while(t--) 
	{
		cin>>n;
		if(s.count(n)||check(n-1)) cout<<"YES"<<endl;
		else cout<<"NO"<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值