分析
简单的version可以直接暴力枚举k判断。
难的version范围到了 1 0 18 10^{18} 1018 ,所以考虑更加数学的方法。
数据范围是n<=1e18,k>1
雪花中点的个数是 1 + k + k 2 + k 3 + . . . + k p 1+k+k^2+k^3+...+k^p 1+k+k2+k3+...+kp,根据数据范围,显然p的范围是p<=62
关键在于缩小k的范围,我们考虑从k的几次方开始枚举,发现如下事实:
-
如果我们直接存入最小的值是 1 + k + k 2 1+k+k^2 1+k+k2,那么k的范围是k<1e9,此时时间复杂度是 O ( 1 e 9 ∗ 62 ) O(1e9*62) O(1e9∗62)
-
如果我们直接存入最小的值是 1 + k + k 2 + k 3 1+k+k^2+k^3 1+k+k2+k3,那么k的范围是k<1e6,时间复杂度是 O ( 1 e 6 ∗ 62 ) O(1e6*62) O(1e6∗62)
所以在大于三次方的情况下依然小于n的数最多也只能是1000000个,可以枚举,对于二次方的情况,只需要对于剩余的数特殊处理就行。
注意到这是一个二次方程,特判一下
1
+
k
+
k
2
=
n
1+k+k^2=n
1+k+k2=n,是否可以解出一个正整数k,且k大于1即可.
具体解法上,可以利用sqrt自动下取整的特点。
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<set>
#include<cmath>
using namespace std;
typedef long long ll;
set<ll> s;
ll t,n;
bool check(ll x)
{
if(x<=3) return false;
ll q=sqrt(x);
if(q*(q+1)==x) return true;
else return false;
}
int main()
{
for(ll i=2;i<=1000000;i++)
{
ll x=i*i*i+i*i+i+1;
while(x<=1e18)
{
s.insert(x);
if(x<=1.0*(1e18-1)/i) x=x*i+1;
else break;
}
}
cin>>t;
while(t--)
{
cin>>n;
if(s.count(n)||check(n-1)) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}