分析
我们分两步确定两条线段是否相交:
(1)快速排斥试验
设以线段 P1P2 为对角线的矩形为R, 设以线段 Q1Q2 为对角线的矩形为T,如果R和T不相交,显然两线段不会相交。
(2)跨立试验
如果两线段相交,则两线段必然相互跨立对方。若P1P2跨立Q1Q2 ,则矢量 ( P1 - Q1 ) 和( P2 - Q1 )位于矢量( Q2 - Q1 ) 的两侧,即( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0。上式可改写成( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0。当 ( P1 - Q1 ) × ( Q2 - Q1 ) = 0 时,说明 ( P1 - Q1 ) 和 ( Q2 - Q1 )共线,但是因为已经通过快速排斥试验,所以 P1 一定在线段 Q1Q2上;同理,( Q2 - Q1 ) ×(P2 - Q1 ) = 0 说明 P2 一定在线段 Q1Q2上。所以判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。同理判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。具体情况如下图所示:
就直接做这两个试验就可以了
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll t;
struct node
{
double x,y;
}a[5];
double cj(node a1,node a2,node a3)
{
return (a1.x-a3.x)*(a2.y-a3.y)-(a1.y-a3.y)*(a2.x-a3.x);
}
bool online(node a1,node a2,node a3)
{
if(a3.x>=min(a1.x,a2.x)&&a3.x<=max(a1.x,a2.x)&&
a3.y>=min(a1.y,a2.y)&&a3.y<=max(a1.y,a2.y))
return 1;
else return 0;
}
bool pd(node a1,node a2,node a3,node a4)
{
if(cj(a3,a4,a1)*cj(a3,a4,a2)<0&&cj(a1,a2,a3)*cj(a1,a2,a4)<0) return 1;
else if(cj(a3,a4,a1)==0&&online(a3,a4,a1)) return 1;
else if(cj(a3,a4,a2)==0&&online(a3,a4,a2)) return 1;
else if(cj(a1,a2,a3)==0&&online(a1,a2,a3)) return 1;
else if(cj(a1,a2,a4)==0&&online(a1,a2,a4)) return 1;
return 0;
}
int main()
{
cin>>t;
while(t--)
{
for(int i=1;i<=4;i++) cin>>a[i].x>>a[i].y;
if(pd(a[1],a[2],a[3],a[4])) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}