【洛谷P1306】斐波那契公约数【矩阵乘法 数论】

44 篇文章 0 订阅
16 篇文章 0 订阅

在这里插入图片描述
l i n k link link

分析:

结论 : g c d ( f i b n , f i b m ) = f i b g c d ( n , m ) :gcd(fib_n,fib_m)=fib_{gcd(n,m)} gcd(fibn,fibm)=fibgcd(n,m)
然后先求出 g c d ( n , m ) gcd(n,m) gcd(n,m)矩阵乘法 求斐波那契数列即可
具体矩阵乘法

CODE:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int mod=1e8;
long long n,m;
struct matrix{
	long long n,m;
	long long G[3][3];
}base,A,B;
matrix operator *(matrix a,matrix b)
{
	matrix C;
	C.n=a.n;C.m=b.m;
	for(int i=1;i<=C.n;i++)
		for(int j=1;j<=C.m;j++)
			C.G[i][j]=0;
	for(int k=1;k<=a.m;k++)
		for(int i=1;i<=a.n;i++)
			for(int j=1;j<=b.m;j++)
				C.G[i][j]=(C.G[i][j]+a.G[i][k]*b.G[k][j]%mod)%mod;
	return C;
}
void ksm(long long x){
	if(x==1){
		A=base;
		return;
	}
	ksm(x/2);
	A=A*A;
	if(x&1) A=A*base;
}
int main(){
	scanf("%lld%lld",&n,&m);
	n=__gcd(n,m);
	base.n=2;base.m=2;
	base.G[1][1]=0;base.G[1][2]=1;
	base.G[2][1]=1;base.G[2][2]=1;
	if(n<=2){
		printf("1");
		return 0;
	}
	else{
		B.m=2;B.n=1;
		B.G[1][1]=1;B.G[1][2]=1;
		ksm(n-1);
		B=B*A;
		printf("%lld",B.G[1][1]);
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值