分析:
因为要在子节点都放置后 才能放自己 那放完自己后 子节点就可以拆除了
对于叶节点 \(ans\)为自己的\(w\)
对于非叶节点
如果所有子节点都没有\(1\)朵以上梅花 \(ans\)为\(w_x+\sum w_{son}\) \(x\)是当前节点 \(son\)是所有子节点
或由一棵子树剩下的梅花\((ans_i-w_i)\)(就是可回收的) 分给之后遍历的子树 这时\(ans=\sum^{i-1}_{k=1}w_k+ans_i\)\(ans\)要取最大
使\(ans\)最大 就把\(ans_i-w_i\)从大到小排 然后这个\(w_k\)用前缀和\(res\)维护 再加就好了
CODE:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e5+7;
int n,w[N],ans[N];
vector<int> son[N];
bool cmp(int x,int y){return ans[x]-w[x]>ans[y]-w[y];}
void dfs(int x)
{
ans[x]=w[x];
for(int i=0;i<son[x].size();i++)
{
int to=son[x][i]; //访问子节点
dfs(to);
ans[x]+=w[to]; //第一种
}
sort(son[x].begin(),son[x].end(),cmp); //从大到小
int res=0;
for(int i=0;i<son[x].size();i++)
{
int to=son[x][i];
ans[x]=max(ans[x],ans[to]+res); //第二种
res+=w[to];
}
}
int main()
{
scanf("%d",&n);
for(int i=2;i<=n;i++)
{
int x;
scanf("%d",&x);
son[x].push_back(i);
}
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
dfs(1);
for(int i=1;i<=n;i++)
printf("%d ",ans[i]);
return 0;
}
该博客主要介绍了如何通过深度优先搜索策略,解决一个关于树形结构中节点分配梅花的问题,以最大化节点的收益。在每个非叶节点上,先将自身的梅花数加上所有子节点的梅花数,然后根据子节点剩余梅花的多少,以从大到小的顺序重新分配,从而获得最大收益。算法使用了前缀和优化,提高了效率。



2101

被折叠的 条评论
为什么被折叠?



