分析:
推式子
\[\frac{a}{x}+\frac{b}{c}=\frac{d}{y} \]
\[\frac{ac+bx}{cx}=\frac{d}{y} \]
\[cxd=acy+bxy \]
\[acy=x(cd-by) \]
\[x=\frac{acy}{cd-by} \]
枚举\(y\) 看如果 \(acy\) 可以整除 \(cd-by\) 就说明存在 \(x\) 解的数量 \(+1\)
至于 \(y\) 的上界\(:\)
数据给了正整数 \(∴cd-by>0\) \(∴by<cd\)
CODE:
点击查看代码
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
int T,a,b,c,d;
int main()
{
scanf("%d",&T);
while(T--)
{
ll ans=0,x,y;
scanf("%d%d%d%d",&a,&b,&c,&d);
for(y=1;y*b<c*d;y++)
if((a*c*y)%(c*d-b*y)==0) ans++;
printf("%lld\n",ans);
}
return 0;
}