【网络爬虫】(3) 案例小结,文本内容爬取,附Python代码

本文介绍了如何使用Python爬虫技术,包括正则表达式、requests库和Pandas等,分别爬取微博评论、豆瓣电影信息、飞卢网小说和知乎问答的内容,以实例展示了具体操作方法和数据处理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节总结一下各种文本内容爬取的方法,进行一下案例实战,附详细解析,包含:微博评论爬取;豆瓣电影信息爬取;飞卢网小说爬取;知乎问答爬取。


1. 微博评论爬取

import re  # 导入正则表达式模块,用于提取文本中的中文字符  
import requests  # 导入requests模块,用于发起网络请求  
import pandas as pd  # 导入pandas模块,用于数据处理和保存到Excel文件  
  
# 设置要爬取的微博评论页面的URL  
url = 'https://m.weibo.cn/comments/hotflow?id=4784937075214225&mid=4784937075214225&max_id_type=0'  
  
# 设置请求头,伪装成浏览器进行访问,避免被服务器识别为爬虫  
headers = {  
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36'  
}  
  
# 发起GET请求,获取微博评论页面的数据  
response = requests.get(url=url, headers=headers)  
  
# 初始化一个空列表,用于存储爬取到的评论信息  
lis = []  
  
# 遍历响应数据中的评论列表  
for index in response.json()['data']['data']:  
    # 使用正则表达式提取评论中的中文字符,并拼接成字符串  
    content = ''.join(re.findall('[\u4e00-\u9fa5]+', index['text']))  
      
    # 构造一个字典,存储爬取到的评论信息  
    dit = {  
        '用户': index['user']['screen_name'],  # 用户名  
        '地区': index['source'].replace('来自', ''),  # 地区,这里简单地将来源文本中的“来自”替换为空字符串  
        '评论': content,  # 评论内容  
        '日期': index['created_at']  # 评论日期  
    }  
      
    # 将构造好的字典添加到列表中  
    lis.append(dit)  
      
    # 打印爬取到的评论信息(注:这行代码可以注释掉,仅用于调试)  
    print(dit)  
  
# 将列表转换为pandas DataFrame,方便后续处理  
pd_data = pd.DataFrame(lis)  
  
# 将DataFrame保存到Excel文件中  
pd_data.to_excel('微博评论.xlsx')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立Sir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值