1.输出全排列
请编写程序输出前n个正整数的全排列(n<10),并通过9个测试用例(即n从1到9)观察n逐步增大时程序的运行时间。
输入格式:
输入给出正整数n(<10)。
输出格式:
输出1到n的全排列。每种排列占一行,数字间无空格。排列的输出顺序为字典序,即序列a1,a2,⋯,a**n排在序列b1,b2,⋯,b**n之前,如果存在k使得a1=b1,⋯,a**k=b**k 并且 a**k+1<b**k+1。
输入样例:
3
输出样例:
123
132
213
231
312
321
一道搜索的简单题,只要按照步骤将1~n的数字遍历一遍,标记用过的数,然后集体输出就行了。
完整代码如下:
#include<iostream>
using namespace std;
#include<cmath>
int n;
int num[100]; //存放数字
bool book[10]; //标记数组
void dfs(int deepth){
if(deepth==n){
for(int i=0;i<deepth;i++){
cout<<num[i]; //如果已经全部遍历完就直接输出
}
cout<<endl;
return; //要记得回溯
}
for(int i=1;i<=n;i++){
if(book[i]==0){
num[deepth]=i;
book[i]=1;
dfs(deepth+1); //需要回溯
book[i]=0; //回溯时要将标记清除
}
}
}
int main(){
cin>>n;
dfs(0);
return 0;
}
2. 山
Drizzle 前往山地统计大山的数目,现在收到这片区域的地图,地图中用0(平地)
和1(山峰)
绘制而成,请你帮忙计算其中的大山数目
山总是被平地四面包围着,每一座山只能在水平或垂直方向上连接相邻的山峰而形成。一座山峰四面被平地包围,这个山峰也算一个大山
另外,你可以假设地图的四面都被平地包围着。
要求:
输入:第一行输入M,N分别表示地图的行列,接下来M行每行输入N个数字表示地图
输出:输出一个整数表示大山的数目
示例:
输入:
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出:
3
范围:
对于 5% 的数据:M,N ≤ 10
对于 100% 的数据:M,N ≤ 2000
这是一道深搜和广搜都可以使用的题目,这道题的思路也非常的简单。就是将联通在一起的山峰都涂上色(即将他们都进行标记),这里要用到搜索来实现。再统计这些联通在一起的山的数量就可以了(这里就是在每次涂完色后让结果数++即可)
完整代码如下:
#include<iostream>
using namespace std;
#include<cmath>
int n,m;
int place[2005][2005]; //山
bool book[2005][2005]; //标记数组
int de_x[4]={0,-1,0,1};
int de_y[4]={-1,0,1,0}; //这两个都是方向数组,用于简化代码量
void dfs(int nowx,int nowy){ //nowx为当前的行数,nowy为当前的列数
int next_x,next_y;
for(int i=0;i<4;i++){
next_x=nowx+de_x[i];
next_y=nowy+de_y[i]; //计算下一个位置的行数和列数
if(next_