深度学习——ViT:an image is worth 16x16 words: transformers for image recognition at scale

前言

ViT使用Transformer的Encoder做图像识别,这篇文章发表在ICLR 2021上,是一片oral文章,具体可见我是链接

其实个人看完transformer后,感觉Transformer更像是一个是一个广义卷积神经,Q、K、V矩阵完全可以看成由多个卷积堆叠在一起组成,只是相比于CNN,Transformer在网络的浅层就通过注意力机制建立了全局视野,其实完全可以尝试在CNN的浅层施加注意力机制,从而建立全局视野。

值得注意的是,论文只给出了在大型数据集上pretrain,在下游数据集上finetune的结果,并没有给出从零训练Transformer的结果,同时这篇论文也给出了Transformer在图像识别上表现出的一些非常有意思的性质。

阅读本文前,请确保自己了解Transformer的结构,本文不会过多介绍Transformer的结构,有兴趣请浏览点我

ViT的结构

模型总体架构
在这里插入图片描述

ViT的输入

如上图所示,对于模型输入而言,ViT将图像分为一个个不相交的patch,每个patch都是一个二维矩阵,ViT将其reshape成一组一维向量 { x 1 , x 2 , . . . , x N } \{x_1,x_2,...,x_N\} {x1,x2,...,xN},接着每个一维向量输入到一个单层全连接层神经网络中(所有patch共用一个MLP),得到一组序列 { x 1 E , x 2 E , . . . , x p E } \{x_1E,x_2E,...,x_pE\} {x1E,x2E,...,xpE},其中E为单层全连接层神经网络的参数(可以看成是一个矩阵),对应上图标有1、2、3…的不标准矩形,除了上述序列外,ViT还添加了一个可学习的序列 x c l a s s x_{class} xclass,输入模型的序列为 { x c l a s s , x 1 E , x 2 E , . . . , x p E } \{x_{class},x_1E,x_2E,...,x_pE\} {xclass,x1E,x2E,...,xpE},上述序列在添加一个可学习的position embedding,作为Transformer Encoder的输入,ViT的position embedding与Transformer不太一致,原Transformer的position embedding不是可学习的,ViT这么做,一方面是相对于文本数据,图像序列的相对位置关系通常难以人为设定,另一方面,可以增加模型的灵活性

分类使用的feature vector

Transformer Encoder的输出是一个序列,ViT使用这组序列中的首个feature vector,作为分类器的输入

实验

实验部分主要探索了ViT在大数据集上预训练,在下游数据上finetune的实验结果,并没有直接report在下游数据直接训练的结果,并且ViT预训练用到的数据越多,性能越好。

此处挑一个比较有意思的结果,如下图所示
在这里插入图片描述

作者计算了每一层,mutil-head attention之间的attention distance,作者没解释attention distance是如何计算的,只是说这个指标可以等价于CNN中的感受野,上图横坐标表示网络深度,纵坐标表示Mean attention distance,即多次实验取平均的结果,attention distance越大,表示感受野越大,可以看到,Transformer的浅层就已经建立了很大的感受野,而CNN中,大的感受野只有在网络的深层才可以建立,这是两者的区别

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值