- 博客(5)
- 收藏
- 关注
原创 Task05:模型搭建和评估
第三章4模型搭建和评估4.1 模型建立和评估--建模4.1.1 切割训练集和测试集4.1.2 模型创建4.1.3 输出模型预测结果4.2 模型搭建和评估-评估模型评估任务一:交叉验证提示4思考4任务二:混淆矩阵提示5任务三:ROC曲线提示6思考6 4模型搭建和评估 4.1 模型建立和评估–建模 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from IPython.di
2021-07-21 17:58:38
345
原创 Task04:数据可视化
第二章3 数据可视化3.1 如何让人一眼看懂你的数据?3.1.1 了解matplotlib,自己创建一个数据项,对其进行基本可视化3.1.2 可视化展示泰坦尼克号数据集中男女中生存人数分布情况(用柱状图)3.1.3 可视化展示泰坦尼克号数据集中男女中生存人与死亡人数的比例图(用柱状图试试)3.1.4 可视化展示泰坦尼克号数据集中不同票价的人生存和死亡人数分布情况(用折线图试试)(横轴是不同票价,纵轴是存活人数)3.1.5 可视化展示泰坦尼克号数据集中不同仓位等级的人生存和死亡人员的分布情况(用柱状图试试)3
2021-07-18 16:13:11
259
原创 Task03:数据重构
第二章2 数据重构2.1 数据的合并2.1.1 将data文件夹里面的所有数据都载入,观察数据的之间的关系2.1.2 使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up2.1.3 使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。2.1.4
2021-07-17 16:53:43
320
原创 Task02:数据清洗及特征处理
第二章1数据清洗及特征处理1.1 缺失值观察与处理1.1.1 缺失值观察1.1.2 对缺失值进行处理2.2 重复值观察与处理2.2.1 任务一:请查看数据中的重复值2.2.2 任务二:对重复值进行处理2.2.3 任务三:将前面清洗的数据保存为csv格式2.3 特征观察与处理2.3.1 任务一:对年龄进行分箱(离散化)处理2.3.2 任务二:对文本变量进行转换2.3.3 任务三:从纯文本Name特征里提取出Titles的特征(所谓的Titles就是Mr,Miss,Mrs等) 1数据清洗及特征处理 数据清洗简
2021-07-15 20:07:13
276
原创 Task01:数据载入及初步观察
Task01:数据载入及初步观察1.数据载入及初步观察1.1载入数据1.1.1导入numpy和pandas1.1.2载入数据1.1.3逐块读取1.1.4修改表头、索引1.2初步观察1.2.1查看数据的基本信息1.2.2观察表格前10行的数据和后15行的数据1.2.3判断数据是否为空1.3保存数据1.3.1将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv2.pandas基础2.1你的数据叫什么2.1.1pandas的数据类型2.1.2查看DataFrame数据的每列的名
2021-07-13 11:24:05
371
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅