@[TOC]Hbase总结
Hbase总结
Hbase使用过程关键知识点。
rowkey的设计
基础知识
HBase 是 BigTable 的开源 java 版本。是建立在 HDFS 之上,提供高可靠性、高性能、列存储、 可伸缩、实时读写 NoSQL 的数据库系统。
NoSQL = NO SQL
NoSQL = Not Only SQL
把 NoSQL 数据的原生查询语句 封装成 SQL
HBase Phoenix
以下五点是 HBase 这个 NoSQL 数据库的要点:
① 它介于 nosql 和 RDBMS 之间,仅能通过主键(row key)和主键的 range 来检索数据,仅支 持单行事务(可通过 hive 支持来实现多表 join 等复杂操作)。
② Hbase 查询数据功能很简单, 不支持 join 等复杂操作
③ 不支持复杂的事务(行级的事务)
④ Hbase 中支持的数据类型: byte[]
⑤ 主要用来存储结构化和半结构化的松散数据。
结构化:数据结构字段含义确定,清晰,典型的如数据库中的表结构.
半结构化:具有一定结构,但语义不够确定,典型的如 HTML 网页,有些字段是确定的(title), 有些不确定(table) 非结构化:杂乱无章的数据,很难按照一个概念去进行抽取,无规律性
与 hadoop 一样, Hbase 目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加 计算和存储能力。
HBase 中的表一般有这样的特点:
(1) 大:一个表可以有上十亿行,上百万列
(2) 面向列: 面向列(族)的存储和权限控制,列(族)独立检索。 (同时对两个列做处理,并不影响)
(3) 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。 2、表结构逻辑视图
HBase 以表的形式存储数据。表有行和列组成。列划分为若干个列簇 (column family) 建表语句只需表名和列族名
3、RowKey
与 nosql 数据库们一样,row key 是用来检索记录的主键。访问 hbase table 中的行,只有三种 方式:
(1) 通过单个 row key 访问
(2) 通过 row key 的 range
(3) 全表扫描
Row key 行键 (Row key)可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes), 最好是 16或者8。 在 hbase 内部, row key 保存为字节数组。 Hbase 会对表中的数据按照 rowkey 排序(字典顺序)
存储时,数据按照 Row key 的字典序(byte order)排序存储。设计 key 时,要充分排序存储这 个特性,将经常一起读取的行存储放到一起。 (位置相关性)
注意:
字典序对 int 排序的结果是
1,10,100,11,12,13,14,15,16,17,18,19,2,20,21,„,9,91,92,93,94,95,96,97,98,99。要保持整形的自 然序,行键必须用 0 作左填充。行的一次读写是原子操作 (不论一次读写多少列)。这个设计决策能够使用户很容易的理解 程序在对同一个行进行并发更新操作时的行为。
4、列簇
hbase 表中的每个列,都归属与某个列族。列族是表的 schema 的一部分(而列不是),必须在 使用表之前定义。
列名都以列族作为前缀。例如 courses:history , courses:math 都属于 courses 这个列族。 访问控制、磁盘和内存的使用统计都是在列族层面进行的。
列族越多,在取一行数据时所要参与 IO、搜寻的文件就越多,所以,如果没有必要,不要 设置太多的列族
(每个列族存放在不同的文件中,建表时列族越少越好)
5、时间戳
HBase 中通过 row 和 columns 确定的为一个存储单元称为 cell。每个 cell 都保存着同一份数 据的多个版本。版本通过时间戳来索引。时间戳的类型是 64 位整型。时间戳可以由 hbase(在 数据写入时自动 )赋值,此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个 cell 中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。
为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担, hbase 提供了两种数据版 本回收方式:
保存数据的最后 n 个版本
保存最近一段时间内的版本(设置数据的生命周期 TTL)。
用户可以针对每个列族进行设置。
6、cell
由{row key, column( = +
HLog(WAL log):
– HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是 HLogKey对象,HLogKey中记录了写入数据的归属信息,
除了table和 region名字外,同时还包括sequence number和timestamp,timestamp是” 写入时间”,sequence number的起始值为0,
或者是最近一次存入文件系 统中sequence number。
– HLog SequeceFile的Value是HBase的KeyValue对象,即对应HFile中的 KeyValue
Region
– HBase自动把表水平划分成多个区域(region),每个region会保存一个表 里面某段连续的数据;每个表一开始只有一个region,随着数据不断插 入表,
region不断增大,当增大到一个阀值的时候,region就会等分会 两个新的region(裂变);
– 当table中的行不断增多,就会有越来越多的region。这样一张完整的表 被保存在多个Regionserver上。
Memstore 与 storefile
– 一个region由多个store组成,一个store对应一个CF(列族)
– store包括位于内存中的memstore和位于磁盘的storefile写操作先写入 memstore,当memstore中的数据达到某个阈值,
hregionserver会启动 flashcache进程写入storefile,每次写入形成单独的一个storefile
– 当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、 major compaction),在合并过程中会进行版本合并和删除工作 (majar),
形成更大的storefile。
– 当一个region所有storefile的大小和超过一定阈值后,会把当前的region 分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡。
– 客户端检索数据,先在memstore找,找不到再找storefile
– HRegion是HBase中分布式存储和负载均衡的最小单元。最小单元就表 示不同的HRegion可以分布在不同的HRegion server上。
– HRegion由一个或者多个Store组成,每个store保存一个columns family。
– 每个Strore又由一个memStore和0至多个StoreFile组成。
如图:StoreFile 以HFile格式保存在HDFS上。
- rowkey是hbase的主键索引
rowkey