语音识别方向秋招面试记录(持续更新)

本文整理了作者在秋招中遇到的语音识别面试重点,涵盖CTC原理、Kaldi相关问题、RNN-T模型介绍,以及机器学习/深度学习中的注意力机制等。此外,还涉及开发中的TensorFlow和操作系统知识。
摘要由CSDN通过智能技术生成

语音识别相关

  • CTC
    13 次 (字节跳动 AI-Lab语音识别实习;vivo提前批语音算法工程师;百度语音技术岗;小米未来星;滴滴语音算法工程师-提前批;陌陌语音算法工程师;百度小度语音技术;商汤AGI语音算法;虎牙语音算法;oppo语音算法;网易互娱AI研究员;贝壳找房语音算法工程师)
    CTC原理
    CTC和chain的关系
    CTC和端到端的关系
    CTC拓扑结构,HCLG中没有C
    BPE训练准则说明
    CTC如何与语言模型结合,FST
    前向算法和维特比算法的区别
    CTC对齐(实现),HMM对齐,RNN-T对齐异同
    beam search具体实现,算法细节

  • kaldi
    13次(vivo提前批语音算法工程师;蔚来语音算法笔试;蔚来语音算法面试;小米未来星;滴滴语音算法工程师-提前批;陌陌语音算法工程师;百度小度语音技术;虎牙语音技术;美团语音算法;oppo语音算法;网易有道;地平线多模语音算法)
    nnet3和chain的关系
    chain-LFTDNN模型中的激活函数
    chain模型介绍,损失函数有什么不同
    WFST解码中的beam和acoustic beam设置为多少
    WFST的优化方法
    单音素模型到三音素模型的对齐怎么做
    kaldi中初始对齐怎么实现(平均对齐)
    kaldi中EM算法的实现,大体流程
    HCLG解释
    如何实现强制对齐
    WFST合并,确定化,最小化,beam,max_active,min_active参数含义
    HCLG中的三音子图C,具体实现
    有没有读过源码,选一部分讲解
    自己做过的优化,改进
    区分性训练和CE训练差异
    simple-decoder,fast-decoder和latgen-fast的区别
    WFST最小化的具体实现
    图代价的具体计算函数,精确到源码
    thchs30如何生成发音词典
    WFST静态图过大时,特别是语言模型过大时如何提高解码效率

  • GMM-HMM
    6次(vivo提前批语音算法工程师;Aibee NLP方向算法开发;百度语音技术岗;百度小度语音技术;贝壳找房语音算法工程师;zoom语音算法工程师)
    为什么进行多次特征转换和训练对齐
    HMM的特点(状态的依赖关系,带入命名体识别介绍)
    GMM-HMM和深度神经网络对比
    GMM和k-means关系
    GMM参数更新
    生成模型HMM和判别式模型DNN的差异,建模目标,训练所需数据量
    EM算法为什么会陷入局部最优,一定会收敛吗

  • 语音信号
    5次(蔚来语音算法笔试;百度小度语音技术;阿里语音交互;虎牙语音算法;网易互娱AI研究员)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值