语音识别技术面临的问题

语音识别技术面临的问题

高皓 2000/12/19


  凭心而论,语音识别是一项复杂的技术,特别对于汉语语音识别尤其如此。因此,尽管多年前就有众多公司和研究机构开始了语音技术,包括语音识别和语音合成技术的研究,但直到最近一两年,在国内应该说是今年,才开始有规模的商用。

  国外已经有了不少较大规模的语音识别IVR系统或者呼叫中心的应用,然而在国内,虽然有将语音识别和呼叫中心结合起来的趋势,但仍没有多少应用。这其中虽然有诸多影响因素,但重要的一点就是汉语语音识别技术还不够完善。那么,语音识别技术要进入大规模商用,还要跨越哪些障碍呢?

  ■用户的独立性
  所谓用户的独立性,就是语音识别软件能够识别有不同嗓音和口音的用户,而无需通过训练软件来使其识别一个特殊用户的声音。目前的许多语音识别软件,是基于标准的发音来进行识别的。而实际上,人们说话千差万别,发音也各不相同,特别对于有口音的语音来说,更是对语音识别软件提出了严峻的挑战。目前的语音识别软件大部分是通过自学习功能,不断的训练来达到软件对于特定用户语音的识别。

  将来,语音识别软件的一个发展趋势就是加强处理性,可以识别在一定范围内的各种发音。而实际上

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 语音识别技术是一种计算机技术,它可以将人类语音转换为文本。这一技术主要应用于自然语言处理、机器翻译、辅助办公等领域。 语音识别技术的工作原理大致如下: 1. 首先,通过话筒或其他设备将人类语音输入计算机。 2. 然后,计算机会对输入的语音进行预处理,包括降噪、分帧、加窗等步骤。 3. 接着,计算机会提取语音的特征并转换为向量。这一过程称为特征提取。 4. 最后,计算机会使用语音识别模型将特征向量转换为文本。语音识别模型是基于机器学习算法训练出来的,它可以根据已有的语音样本学习如何将语音转换为文本。 语音识别技术在改善人机交互、提高工作效率等方面有着广泛的应用。例如,在智能语音助手、语音翻译软件等应用中,可以使用语音识别技术来提供语音输入功能;在辅助办公软件中,可以使用语音识别技术来实现语音命令操作。 ### 回答2: 语音识别技术是一种将人类声音转化为文字的技术。它的基本原理是从音频中提取人类语音信号,通过分析和处理来识别出其中的语音内容,并最终将其转化为文本格式。 一般而言,语音识别技术包含以下几个主要步骤。首先,收集音频数据,可以是通过麦克风采集的实时语音,也可以是预先录制的音频文件。接下来,对音频信号进行预处理,包括去除噪声、增强语音信号等,以提高识别准确性。 然后,将预处理后的音频信号转换为特征向量。这一步骤常常使用短时傅里叶变换(STFT)或梅尔频率倒谱系数(MFCC)等算法,将时间域的语音信号转换为频域的特征向量,以便后续的模式匹配和识别。 接下来,通过训练一个语音识别模型来进行匹配和识别。语音识别模型通常由音素(语音的最小单位)的集合组成,每个音素都有与之对应的声学模型。通过计算预处理后的特征向量与声学模型之间的相似度,选择最匹配的音素,最终组合成词或句子。 最后,根据识别结果生成相应的文本输出。这可能需要一些后处理步骤,如音频信号对齐、错误修正等。 语音识别技术的应用非常广泛。例如,它可以用于语音助手(如Siri、Alexa)、电话交互系统、语音翻译、语音识别输入法等。它极大地方便了人们与设备的交互,并且在各行各业中都发挥了重要的作用。 随着技术的不断进步,语音识别技术的准确性和性能得到了显著提升。然而,仍存在一些挑战,如多人混音的语音识别、不同语种的识别等。未来,随着深度学习等技术的发展,语音识别技术将会有更广泛的应用,并为人们带来更多的便利和创新。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tchaikov

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值