[BZOJ3626][LNOI2014]LCA 树链剖分

太神啦!
http://blog.csdn.net/popoqqq/article/details/38823457

/**************************************************************
    Problem: 3626
    User: di4CoveRy
    Language: C++
    Result: Accepted
    Time:3264 ms
    Memory:16944 kb
****************************************************************/

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>

#define mid ((l+r)>>1)
#define ls l,mid,t<<1
#define rs mid+1,r,t<<1^1

#define N 100050
#define mod 201314

using namespace std;
typedef long long LL;

struct Monster{ int x,z,r,f; }Q[N];
bool cmp(Monster p1,Monster p2) { return p1.x < p2.x; }
int siz[N],son[N],top[N],fa[N];
int dfn[N],tme;
LL ag[4*N],tr[4*N],trsiz[4*N],ret;
int ll,rr,v; 
int n,q,cnt;
vector<int> e[N];
LL ans[N];

void dfs1(int u) {
    siz[u] = 1;
    for (int i=0;i<(int)e[u].size();i++) {
        int v = e[u][i];
        dfs1(v); siz[u] += siz[v];
        if (!son[u] || siz[v] > siz[ son[u] ]) son[u] = v;
    }
}

void dfs2(int u,int h) {
    top[u] = h; dfn[u] = ++tme; 
    if (son[u]) dfs2(son[u],h);
    for (int i=0;i<(int)e[u].size();i++) {
        int v = e[u][i]; if (v == son[u]) continue;
        dfs2(v,v);
    }
}

LL build(int l,int r,int t) {
    return l == r ? trsiz[t] = 1LL : trsiz[t] = build(ls) + build(rs);
}

void push_down(int t) {
    tr[t<<1] += trsiz[t<<1] * ag[t];
    tr[t<<1^1] += trsiz[t<<1^1] * ag[t];
    ag[t<<1] += ag[t];
    ag[t<<1^1] += ag[t];
    ag[t] = 0;
}

void update(int l,int r,int t) {
    if (l > rr || r < ll) return ;
    if (l >= ll && r <= rr) {
        ag[t] += v;
        tr[t] += 1LL * trsiz[t] * v;
        return ;
    }
    push_down(t); update(ls); update(rs);
    tr[t] = tr[t<<1] + tr[t<<1^1];
}

void query(int l,int r,int t) {
    if (l > rr || r < ll) return ;
    if (l >= ll && r <= rr) { ret += tr[t]; return ; }
    push_down(t); 
    query(ls); query(rs);
    tr[t] = tr[t<<1] + tr[t<<1^1];
}

void add(int x) {
    while (x) {
        int y = top[x];
        ll = dfn[y] , rr = dfn[x] , v = 1;
        update(1,n,1);
        x = fa[y];
    }
}

LL ask(int x) {
    ret = 0;
    while (x) {
        int y = top[x];
        ll = dfn[y] , rr = dfn[x];
        query(1,n,1);
        x = fa[y];
    }
    return ret;
}

int main() {
    #ifndef ONLINE_JUDGE
        freopen("1.in","r",stdin);
    #endif
    scanf("%d%d",&n,&q);
    for (int i=2;i<=n;i++) {
        int x; scanf("%d",&x); x++;
        fa[i] = x;
        e[x].push_back(i);
    }
    dfs1(1); dfs2(1,1);
    build(1,n,1);
    for (int i=1;i<=q;i++) {
        int ql,qr,qz;
        scanf("%d%d%d",&ql,&qr,&qz); ql++ , qr++ , qz++;
        Q[++cnt] = (Monster){ql-1,qz,i,-1};
        Q[++cnt] = (Monster){  qr,qz,i, 1};
    }
    sort(Q+1,Q+cnt+1,cmp);
    int T = 0;
    for (int _=1;_<=cnt;_++) {
        while (T<Q[_].x) {
            T++;
            add(T);
        }
        ans[ Q[_].r ] += 1LL * Q[_].f * ask( Q[_].z );
    }
    for (int _=1;_<=q;_++) printf("%d\n",(int)(ans[_] % mod));
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值