[BZOJ4869][Shoi2017]相逢是问候 扩展欧拉定理+势能线段树

根据扩展欧拉定理
xϕ(p) 时有 axax%ϕ(p)+ϕ(p)(modp)
我们发现在至多进行 t 次操作后,aca(modp),t为进行 p=ϕ(p) 多少次之后 p=1 t 的大小为O(log2p)级别的
对此,每个数至多操作 log2p 次就不变了,对于长度为 L 的区间,至多操作Llog2p次修改
线段树维护区间势能,就是这个区间还能被修改多少次,不修改势能为0的节点
时间代价为 T(N)=2T(N2)+Nlog2N T(N)=Nlog22N

#include <bits/stdc++.h>
#define mid ((l+r)>>1)
#define ls l,mid,t<<1
#define rs mid+1,r,t<<1^1
#define ___ int l,int r,int t

#define N 50050
#define tp 50000

using namespace std;
typedef long long LL;
struct Node{int sum,tot;}tr[4*N];
int C[tp+5][25],CC[tp+5][25],a[N],vis[N],n,m,ll,rr,p,c,ans;
int F[N][25],phi[N],cnt;
inline int rd() {int r;scanf("%d",&r);return r;}
inline void inc(int &x,int y) {x=(x+y)%p;}

inline int qp(int a,int b,int p) {
    int ret = 1;
    while (b) {
        if (b&1) ret = 1LL * ret * a % p;
        b >>= 1, a = 1LL * a * a % p;
    }
    return ret;
}

Node operator+(Node p1, Node p2) {
    Node tmp;
    tmp.sum = (p1.sum + p2.sum) % p;
    tmp.tot = p1.tot + p2.tot;
    return tmp;
}

Node build(___) {
    return tr[t] = l==r ? (Node){a[l],vis[l]<cnt} : build(ls) + build(rs);
}

void update(___) {
    if (!tr[t].tot) return ;
    if (l==r) {
        vis[l]<cnt ? ++vis[l]:0;
        tr[t].sum = F[l][vis[l]] % p;
        tr[t].tot = (int)(vis[l]<cnt);
        return ;
    }
    if (ll>=l && r<=rr && !tr[t].tot) return ;
    if (ll<=mid) update(ls);
    if (rr>mid) update(rs);
    tr[t]=tr[t<<1]+tr[t<<1^1];
}

void query(___) {
    if (l>=ll&&r<=rr) {inc(ans, tr[t].sum);return ;}
    if (ll <= mid) query(ls);
    if (rr > mid) query(rs);
}

int get(int x) {
    int ret = x;;
    for (int i=2;i*i<=x;i++) if (x%i == 0) {
        ret = 1LL * ret * (i-1) / i;
        while (x%i == 0) x /= i;
    }
    if (x-1) return 1LL * ret * (x-1) / x;
    return ret;
}

inline int nqp(int t,int p) {
    if (t<=tp)
        return C[t][p];
    else
        return 1LL * CC[t/tp][p] * C[t%tp][p] % phi[p];
}

void pre() {

    int cur = p;
    while (cur != 1) {
        phi[cnt] = cur;
        ++cnt;
        cur = get(cur);
    }
    phi[cnt] = 1;
    phi[++cnt] = 1;

}

int main() {
    n = rd(), m = rd(), p = rd(), c = rd();
    for (int i=1;i<=n;i++) a[i] = rd(), vis[i] = 0;
    pre();

    for (int x=0;x<=cnt;x++) {
        C[0][x] = 1 % phi[x];
        for (int i=1;i<=tp;i++) C[i][x] = 1LL * c * C[i-1][x] % phi[x];
        int g = qp(c, tp, phi[x]);
        CC[0][x] = 1 % phi[x];
        for (int i=1;i<=tp;i++) CC[i][x] = 1LL * g * CC[i-1][x] % phi[x];
    }

    for (int i=1;i<=n;i++) {
        F[i][0] = a[i];
        for (int j=1;j<=cnt;j++) {
            int cur = a[i];
            if (cur >= phi[j]) cur = cur % phi[j] + phi[j];
            for (int k=j;k>=1;k--) {
                cur = nqp(cur, k-1);
                if (!cur) cur += phi[k-1];
            }
            F[i][j] = cur % phi[0];
        }
    }

    build(1,n,1);
    while (m--) {
        int cmd = 0;
        cmd = rd(), ll = rd(), rr = rd();
        if (cmd == 0) {
            update(1,n,1);
        } else {
            ans = 0;
            query(1,n,1);
            printf("%d\n",ans);
        }
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值