FWT学习笔记(快速沃尔什变换)

44 篇文章 4 订阅
10 篇文章 0 订阅

前言

首先,我们来看看多项式乘法。

f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n f(x)=a_0+a_1x+a_2x^2+\dots+a_nx^n f(x)=a0+a1x+a2x2++anxn

g ( x ) = b 0 + b 1 x + b 2 x 2 + ⋯ + b n x n g(x)=b_0+b_1x+b_2x^2+\dots+b_nx^n g(x)=b0+b1x+b2x2++bnxn

h ( x ) = f ( x ) × g ( x ) h(x)=f(x)\times g(x) h(x)=f(x)×g(x),如果

h ( x ) = c 0 + c 1 x + c 2 x 2 + ⋯ + c n x n h(x)=c_0+c_1x+c_2x^2+\dots+c_nx^n h(x)=c0+c1x+c2x2++cnxn

那么显然 c k = ∑ i = 0 k a i × b k − i c_k=\sum\limits_{i=0}^ka_i\times b_{k-i} ck=i=0kai×bki

我们可以用 F F T FFT FFT(快速傅里叶变换) O ( n log ⁡ n ) O(n\log n) O(nlogn)求出多项式乘法。

为了方便,我们可以用 A A A来表示多项式 f ( x ) f(x) f(x)

A = ( a 0 , a 1 , a 2 , … , a n ) A=(a_0,a_1,a_2,\dots,a_n) A=(a0,a1,a2,,an)

同样地,多项式 g ( x ) g(x) g(x) h ( x ) h(x) h(x)同样可以用 B B B C C C来表示。

那么,多项式乘法可以表示为

C k = ∑ i + j = k A i × B j C_k=\sum\limits_{i+j=k}A_i\times B_j Ck=i+j=kAi×Bj

那如果式子变成这样呢?

C k = ∑ i ⊕ j = k A i × B j C_k=\sum\limits_{i\oplus j=k}A_i\times B_j Ck=ij=kAi×Bj

其中 ⊕ \oplus 可以为 & , ∣ , xor \&,|,\text{xor} &,,xor

这个时候, F F T FFT FFT就不管用了,我们就需要使用 F W T FWT FWT(快速沃尔什变换)。


约定

A + B = ( A 0 + B 0 , A 1 + B 1 , A 2 + B 2 , …   ) A+B=(A_0+B_0,A_1+B_1,A_2+B_2,\dots) A+B=(A0+B0,A1+B1,A2+B2,)

A − B = ( A 0 + B 0 , A 1 + B 1 , A 2 + B 2 , …   ) A-B=(A_0+B_0,A_1+B_1,A_2+B_2,\dots) AB=(A0+B0,A1+B1,A2+B2,)

A × B = ( A 0 × B 0 , A 1 × B 1 , A 2 × B 2 , …   ) A\times B=(A_0\times B_0,A_1\times B_1,A_2\times B_2,\dots) A×B=(A0×B0,A1×B1,A2×B2,)

A ⊕ B = ( ∑ i ⊕ j = 0 A i × B j , ∑ i ⊕ j = 1 A i × B j , ∑ i ⊕ j = 2 A i × B j , …   ) A\oplus B=(\sum\limits_{i\oplus j=0}A_i\times B_j,\sum\limits_{i\oplus j=1}A_i\times B_j,\sum\limits_{i\oplus j=2}A_i\times B_j,\dots) AB=(ij=0Ai×Bj,ij=1Ai×Bj,ij=2Ai×Bj,)

注意 ⊕ \oplus 在此处并不一定表示异或,还可以是 & , ∣ \&,| &,


快速沃尔什变换

对于求上面这类运算的卷积,我们可以用 F F T FFT FFT的思路,将两个多项式先正变换,再按位相乘,最后逆变换回来。这就是 F W T FWT FWT的思路。

首先,令 A A A B B B的最高次项的次数为 m m m,我们取一个整数 n n n,使 2 n ≥ m 2^n\geq m 2nm n n n最小。那么让 A A A B B B的长度为 2 n 2^n 2n。这个操作和 F F T FFT FFT中的是一样的。

对于每一个卷积,我们需要找到一个变换 T T T,使得

  • T ( A ⊕ B ) = T ( A ) × T ( B ) T(A\oplus B)=T(A)\times T(B) T(AB)=T(A)×T(B)
  • I T ( T ( A ) × T ( B ) ) = A ⊕ B IT(T(A)\times T(B))=A\oplus B IT(T(A)×T(B))=AB

其中 I T IT IT表示 T T T的逆变换。

注意 T ( A ) T(A) T(A) I T ( B ) IT(B) IT(B)也表示多项式。

或卷积

C k = ∑ i ∣ j = k A i × B j C_k=\sum\limits_{i|j=k}A_i\times B_j Ck=ij=kAi×Bj,也可记作 C = A ∣ B C=A|B C=AB

构造 T ( A ) i = ∑ j ⊆ i A j T(A)_i=\sum\limits_{j\subseteq i}A_j T(A)i=jiAj,其中我们将二进制位的关系看作集合关系,即 j ⊆ i j\subseteq i ji表示 ( j ∣ i ) = i (j|i)=i (ji)=i,下同。

则有

T ( A ∣ B ) p = ∑ k ⊆ p ∑ i ∣ j = k A i × B j = ∑ i ⊆ p A i × ∑ j ⊆ p B j = T ( A ) p × T ( B ) p T(A|B)_p=\sum\limits_{k\subseteq p}\sum\limits_{i|j=k}A_i\times B_j=\sum\limits_{i\subseteq p}A_i\times \sum\limits_{j\subseteq p}B_j=T(A)_p\times T(B)_p T(AB)p=kpij=kAi×Bj=ipAi×jpBj=T(A)p×T(B)p

其中 ( ( i ∣ j ) ⊆ p ) ⇔ ( i ⊆ p ) ∧ ( j ⊆ p ) ((i|j)\subseteq p)\Leftrightarrow(i\subseteq p)\wedge(j\subseteq p) ((ij)p)(ip)(jp)

设当前的多项式 A A A 2 n 2^n 2n项,用 A 0 A_0 A0表示 A A A的前 2 n − 1 2^{n-1} 2n1项, A 1 A_1 A1表示 A A A的后 2 n − 1 2^{n-1} 2n1项。

那么有递推式

T ( A ) = ( T ( A 0 ) , T ( A 0 ) + T ( A 1 ) ) T(A)=(T(A_0),T(A_0)+T(A_1)) T(A)=(T(A0),T(A0)+T(A1))

中间的逗号表示将 T ( A 0 ) T(A_0) T(A0) T ( A 1 ) T(A_1) T(A1)拼接在一起。

为什么是这样呢?看上面的 T T T的式子 T ( A ) i = ∑ j ⊆ i A j T(A)_i=\sum\limits_{j\subseteq i}A_j T(A)i=jiAj,第 n n n位为 1 1 1的部分对第 n n n位为 0 0 0的部分没有影响,而第 n n n位为 0 0 0的部分可以作为第 n n n位为 1 1 1的部分的子集。

那么, T T T的逆变换 I T IT IT如下

I T ( A ′ ) = ( I T ( A 0 ′ ) , I T ( A 1 ′ ) − I T ( A 0 ′ ) ) IT(A')=(IT(A_0'),IT(A_1')-IT(A_0')) IT(A)=(IT(A0),IT(A1)IT(A0))

其中 A ′ A' A表示 A A A经过变换 T T T得到的多项式。即 A ′ = T ( A ) A'=T(A) A=T(A) A 0 ′ A_0' A0表示 A ′ A' A的前 2 n − 1 2^{n-1} 2n1项,即 T ( A ) 0 T(A)_0 T(A)0 A 1 ′ A_1' A1表示 A ′ A' A的后 2 n − 1 2^{n-1} 2n1项,即 T ( A ) 1 T(A)_1 T(A)1

已知 T ( A ) 0 T(A)_0 T(A)0 T ( A ) 1 T(A)_1 T(A)1,可求 A 0 A_0 A0 A 1 A_1 A1,证明如下

∵ T ( A ) 0 = T ( A 0 ) \because T(A)_0=T(A_0) T(A)0=T(A0)
∴ A 0 = I T ( T ( A 0 ) ) = I T ( T ( A ) 0 ) \therefore A_0=IT(T(A_0))=IT(T(A)_0) A0=IT(T(A0))=IT(T(A)0)
∵ T ( A ) 1 = T ( A 0 ) + T ( A 1 ) \because T(A)_1=T(A_0)+T(A_1) T(A)1=T(A0)+T(A1)
∴ T ( A 1 ) = T ( A ) 1 − T ( A 0 ) = T ( A ) 1 − T ( A ) 0 \therefore T(A_1)=T(A)_1-T(A_0)=T(A)_1-T(A)_0 T(A1)=T(A)1T(A0)=T(A)1T(A)0
A 1 = I T ( T ( A 1 ) ) = I T ( T ( A ) 1 − T ( A ) 0 ) = I T ( T ( A ) 1 ) − I T ( T ( A ) 0 ) \quad A_1=IT(T(A_1))=IT(T(A)_1-T(A)_0)=IT(T(A)_1)-IT(T(A)_0) A1=IT(T(A1))=IT(T(A)1T(A)0)=IT(T(A)1)IT(T(A)0)


下面是代码实现。正变换和逆变换的实现可以合并在一起。

code

void fwt_or(long long *w,int fl){
	for(int s=2;s<=1<<n;s<<=1){
		int mid=s>>1;
		for(int v=0;v<1<<n;v+=s){
			for(int i=0;i<mid;i++){
				w[v+mid+i]=(w[v+mid+i]+fl*w[v+i]+mod)%mod;
			}
		}
	}
}

与卷积

C k = ∑ i & j = k A i × B j C_k=\sum\limits_{i\& j=k}A_i\times B_j Ck=i&j=kAi×Bj,也可记作 C = A & B C=A\& B C=A&B

构造 T ( A ) i = ∑ i ⊆ j A j T(A)_i=\sum\limits_{i\subseteq j}A_j T(A)i=ijAj

则有

T ( A & B ) p = ∑ p ⊆ k ∑ i & j = k A i × B j = ∑ p ⊆ i A i × ∑ p ⊆ j B j = T ( A ) p × T ( B ) p T(A\& B)_p=\sum\limits_{p\subseteq k}\sum\limits_{i\& j=k}A_i\times B_j=\sum\limits_{p\subseteq i}A_i\times \sum\limits_{p\subseteq j}B_j=T(A)_p\times T(B)_p T(A&B)p=pki&j=kAi×Bj=piAi×pjBj=T(A)p×T(B)p

其中 ( p ⊆ ( i & j ) ) ⇔ ( p ⊆ i ) ∧ ( p ⊆ j ) (p\subseteq (i\& j))\Leftrightarrow(p\subseteq i)\wedge(p\subseteq j) (p(i&j))(pi)(pj)

设当前的多项式 A A A 2 n 2^n 2n项,用 A 0 A_0 A0表示 A A A的前 2 n − 1 2^{n-1} 2n1项, A 1 A_1 A1表示 A A A的后 2 n − 1 2^{n-1} 2n1项。

那么有递推式

T ( A ) = ( T ( A 0 ) + T ( A 1 ) , T ( A 1 ) ) T(A)=(T(A_0)+T(A_1),T(A_1)) T(A)=(T(A0)+T(A1),T(A1))

为什么是这样呢?也看上面的 T T T的式子 T ( A ) i = ∑ i ⊆ j A j T(A)_i=\sum\limits_{i\subseteq j}A_j T(A)i=ijAj,第 n n n位为 0 0 0的部分对第 n n n位为 1 1 1的部分没有影响,而第 n n n位为 1 1 1的部分可以作为第 n n n位为 0 0 0的部分的超集。

那么, T T T的逆变换 I T IT IT如下

I T ( A ′ ) = ( I T ( A 0 ′ ) − I T ( A 1 ′ ) , I T ( A 1 ′ ) ) IT(A')=(IT(A_0')-IT(A_1'),IT(A_1')) IT(A)=(IT(A0)IT(A1),IT(A1))

其中 A ′ A' A表示 A A A经过变换 T T T得到的多项式。即 A ′ = T ( A ) A'=T(A) A=T(A) A 0 ′ A_0' A0表示 A ′ A' A的前 2 n − 1 2^{n-1} 2n1项,即 T ( A ) 0 T(A)_0 T(A)0 A 1 ′ A_1' A1表示 A ′ A' A的后 2 n − 1 2^{n-1} 2n1项,即 T ( A ) 1 T(A)_1 T(A)1

已知 T ( A ) 0 T(A)_0 T(A)0 T ( A ) 1 T(A)_1 T(A)1,可求 A 0 A_0 A0 A 1 A_1 A1,证明如下

∵ T ( A ) 1 = T ( A 1 ) \because T(A)_1=T(A_1) T(A)1=T(A1)
∴ A 1 = I T ( T ( A 1 ) ) = I T ( T ( A ) 1 ) \therefore A_1=IT(T(A_1))=IT(T(A)_1) A1=IT(T(A1))=IT(T(A)1)
∵ T ( A ) 0 = T ( A 0 ) + T ( A 1 ) \because T(A)_0=T(A_0)+T(A_1) T(A)0=T(A0)+T(A1)
∴ T ( A 0 ) = T ( A ) 0 − T ( A 1 ) = T ( A ) 0 − T ( A ) 1 \therefore T(A_0)=T(A)_0-T(A_1)=T(A)_0-T(A)_1 T(A0)=T(A)0T(A1)=T(A)0T(A)1
A 0 = I T ( T ( A 0 ) ) = I T ( T ( A ) 0 − T ( A ) 1 ) = I T ( T ( A ) 0 ) − I T ( T ( A ) 1 ) \quad A_0=IT(T(A_0))=IT(T(A)_0-T(A)_1)=IT(T(A)_0)-IT(T(A)_1) A0=IT(T(A0))=IT(T(A)0T(A)1)=IT(T(A)0)IT(T(A)1)


下面是代码实现。同样地,正变换和逆变换的实现可以合并在一起。

code

void fwt_and(long long *w,int fl){
	for(int s=2;s<=1<<n;s<<=1){
		int mid=s>>1;
		for(int v=0;v<1<<n;v+=s){
			for(int i=0;i<mid;i++){
				w[v+i]=(w[v+i]+fl*w[v+mid+i]+mod)%mod;
			}
		}
	}
}

异或卷积

C k = ∑ i ⊕ j = k A i × B j C_k=\sum\limits_{i\oplus j=k}A_i\times B_j Ck=ij=kAi×Bj,也可记作 C = A ⊕ B C=A\oplus B C=AB

在这里, ⊕ \oplus 就表示异或了。

首先,两个二进制数的异或,不会改变这两个数中二进制为 1 1 1的位的数量和的奇偶性。

d i d_i di表示 i i i的二进制为 1 1 1的位的个数的奇偶性(值为 0 0 0 1 1 1),则有

d i ⊕ j = d i ⊕ d j d_{i\oplus j}=d_i\oplus d_j dij=didj

显然有

d i & k ⊕ d j & k = d ( i & k ) ⊕ ( j & k ) = d ( i ⊕ j ) & k d_{i\& k}\oplus d_{j\& k}=d_{(i\& k)\oplus (j\& k)}=d_{(i\oplus j)\& k} di&kdj&k=d(i&k)(j&k)=d(ij)&k

于是,我们可以构造

T ( A ) i = ∑ ( − 1 ) j & i A j T(A)_i=\sum (-1)^{j\& i}A_j T(A)i=(1)j&iAj

则有

T ( A ⊕ B ) p = ∑ ( − 1 ) k & p ∑ i ⊕ j = k A i × B j = ∑ ( − 1 ) d i & p ⊕ d j & p A i × B j T(A\oplus B)_p=\sum(-1)^{k\& p}\sum\limits_{i\oplus j=k}A_i\times B_j=\sum\limits(-1)^{d_{i\& p}\oplus d_{j\& p}}A_i\times B_j T(AB)p=(1)k&pij=kAi×Bj=(1)di&pdj&pAi×Bj

= ∑ ( − 1 ) d i & p A i × ∑ ( − 1 ) d j & p B j = T ( A ) × T ( B ) =\sum (-1)^{d_{i\& p}}A_i\times \sum(-1)^{d_{j\& p}}B_j=T(A)\times T(B) =(1)di&pAi×(1)dj&pBj=T(A)×T(B)

设当前的多项式 A A A 2 n 2^n 2n项,用 A 0 A_0 A0表示 A A A的前 2 n − 1 2^{n-1} 2n1项, A 1 A_1 A1表示 A A A的后 2 n − 1 2^{n-1} 2n1项。

那么有递推式

T ( A ) = ( T ( A 0 ) + T ( A 1 ) , T ( A 0 ) − T ( A 1 ) ) T(A)=(T(A_0)+T(A_1),T(A_0)-T(A_1)) T(A)=(T(A0)+T(A1),T(A0)T(A1))

为什么呢?

对于 0 ≤ i < 2 n − 1 0\leq i < 2^{n-1} 0i<2n1

T ( A ) i = ∑ ( − 1 ) d j & i A j = T ( A 0 ) i + ∑ j = 0 2 n − 1 − 1 ( − 1 ) d j & i ( A 1 ) j T(A)_i=\sum (-1)^{d_{j\& i}}A_j=T(A_0)_i+\sum\limits_{j=0}^{2^{n-1}-1}(-1)^{d_{j\& i}}(A_1)_j T(A)i=(1)dj&iAj=T(A0)i+j=02n11(1)dj&i(A1)j

T ( A 1 ) i = ∑ j = 0 2 n − 1 − 1 ( − 1 ) d j & i ( A 1 ) j T(A_1)_i=\sum\limits_{j=0}^{2^{n-1}-1} (-1)^{d_{j\& i}}(A_1)_j T(A1)i=j=02n11(1)dj&i(A1)j

所以

T ( A ) 0 = T ( A 0 ) + T ( A 1 ) T(A)_0=T(A_0)+T(A_1) T(A)0=T(A0)+T(A1)

注意因为 0 ≤ i < 2 n − 1 0\leq i < 2^{n-1} 0i<2n1,所以 ( j + 2 n − 1 ) & i = j & i (j+2^{n-1})\& i=j\& i (j+2n1)&i=j&i

对于 2 n − 1 ≤ i < 2 n 2^{n-1}\leq i<2^n 2n1i<2n

T ( A ) i = ∑ ( − 1 ) d j & i A j = ∑ j = 0 2 n − 1 − 1 ( − 1 ) d j & ( i − 2 n − 1 ) ( A 0 ) j + ∑ j = 0 2 n − 1 − 1 ( − 1 ) d j & ( i − 2 − 1 ) + 1 ( A 1 ) j T(A)_i=\sum (-1)^{d_{j\& i}}A_j=\sum\limits_{j=0}^{2^{n-1}-1}(-1)^{d_{j\& (i-2^{n-1})}}(A_0)_j+\sum\limits_{j=0}^{2^{n-1}-1}(-1)^{d_{j\&(i-2^{-1})}+1}(A_1)_j T(A)i=(1)dj&iAj=j=02n11(1)dj&(i2n1)(A0)j+j=02n11(1)dj&(i21)+1(A1)j

所以

T ( A ) 1 = T ( A 0 ) + ( − 1 ) × T ( A 1 ) = T ( A 0 ) − T ( A 1 ) T(A)_1=T(A_0)+(-1)\times T(A_1)=T(A_0)-T(A_1) T(A)1=T(A0)+(1)×T(A1)=T(A0)T(A1)

由此可得

T ( A ) = ( T ( A ) 0 , T ( A ) 1 ) = ( T ( A 0 ) + T ( A 1 ) , T ( A 0 ) − T ( A 1 ) ) T(A)=(T(A)_0,T(A)_1)=(T(A_0)+T(A_1),T(A_0)-T(A_1)) T(A)=(T(A)0,T(A)1)=(T(A0)+T(A1),T(A0)T(A1))

T T T的逆变换 I T IT IT如下

I T ( A ′ ) = ( I T ( A 0 ′ ) + I T ( A 1 ′ ) 2 , I T ( A 0 ′ ) − I T ( A 1 ′ ) 2 ) IT(A')=(\dfrac{IT(A_0')+IT(A_1')}{2},\dfrac{IT(A_0')-IT(A_1')}{2}) IT(A)=(2IT(A0)+IT(A1),2IT(A0)IT(A1))

其中 A ′ A' A表示 A A A经过变换 T T T得到的多项式。即 A ′ = T ( A ) A'=T(A) A=T(A) A 0 ′ A_0' A0表示 A ′ A' A的前 2 n − 1 2^{n-1} 2n1项,即 T ( A ) 0 T(A)_0 T(A)0 A 1 ′ A_1' A1表示 A ′ A' A的后 2 n − 1 2^{n-1} 2n1项,即 T ( A ) 1 T(A)_1 T(A)1

已知 T ( A ) 0 T(A)_0 T(A)0 T ( A ) 1 T(A)_1 T(A)1,可求 A 0 A_0 A0 A 1 A_1 A1,证明如下

∵ T ( A ) 0 = T ( A 0 ) + T ( A 1 ) , T ( A ) 1 = T ( A 0 ) − T ( A 1 ) \because T(A)_0=T(A_0)+T(A_1),T(A)_1=T(A_0)-T(A_1) T(A)0=T(A0)+T(A1),T(A)1=T(A0)T(A1)

∴ T ( A 0 ) = T ( A ) 0 + T ( A ) 1 2 , T ( A 1 ) = T ( A ) 0 − T ( A ) 1 2 \therefore T(A_0)=\dfrac{T(A)_0+T(A)_1}{2},T(A_1)=\dfrac{T(A)_0-T(A)_1}{2} T(A0)=2T(A)0+T(A)1,T(A1)=2T(A)0T(A)1

A 0 = I T ( T ( A 0 ) ) = I T ( T ( A ) 0 + T ( A ) 1 2 ) = I T ( T ( A ) 0 ) + I T ( T ( A ) 1 ) 2 \quad A_0=IT(T(A_0))=IT(\dfrac{T(A)_0+T(A)_1}{2})=\dfrac{IT(T(A)_0)+IT(T(A)_1)}{2} A0=IT(T(A0))=IT(2T(A)0+T(A)1)=2IT(T(A)0)+IT(T(A)1)

A 1 = I T ( T ( A 1 ) ) = I T ( T ( A ) 0 − T ( A ) 1 2 ) = I T ( T ( A ) 0 ) − I T ( T ( A ) 1 ) 2 \quad A_1=IT(T(A_1))=IT(\dfrac{T(A)_0-T(A)_1}{2})=\dfrac{IT(T(A)_0)-IT(T(A)_1)}{2} A1=IT(T(A1))=IT(2T(A)0T(A)1)=2IT(T(A)0)IT(T(A)1)


下面是代码实现。正变换和逆变换的实现可以合并在一起。

code

void fwt_xor(long long *w,int fl){
	for(int s=2;s<=1<<n;s<<=1){
		int mid=s>>1;
		for(int v=0;v<1<<n;v+=s){
			for(int i=0;i<mid;i++){
				long long t1=w[v+i],t2=w[v+mid+i];
				w[v+i]=(t1+t2)%mod;w[v+mid+i]=(t1-t2+mod)%mod;
				if(fl==-1){
					w[v+i]=w[v+i]*ny2%mod;
					w[v+mid+i]=w[v+mid+i]*ny2%mod;
				}
			}
		}
	}
}

例题

P4717 【模板】快速莫比乌斯/沃尔什变换 (FMT/FWT)

或卷积、与卷积、异或卷积的模板。

code

#include<bits/stdc++.h>
using namespace std;
int n;
long long a[1<<18],b[1<<18],c[1<<18],v1[1<<18],v2[1<<18];
long long mod=998244353,ny2=499122177;
void pt(){
	for(int i=0;i<1<<n;i++){
		a[i]=v1[i];b[i]=v2[i];
	}
}
void gt(){
	for(int i=0;i<1<<n;i++) c[i]=a[i]*b[i]%mod;
}
void out(){
	for(int i=0;i<1<<n;i++) printf("%lld ",c[i]);
	printf("\n");
}
void fwt1(long long *w,int fl){
	for(int s=2;s<=1<<n;s<<=1){
		int mid=s>>1;
		for(int v=0;v<1<<n;v+=s){
			for(int i=0;i<mid;i++){
				w[v+mid+i]=(w[v+mid+i]+fl*w[v+i]+mod)%mod;
			}
		}
	}
}
void fwt2(long long *w,int fl){
	for(int s=2;s<=1<<n;s<<=1){
		int mid=s>>1;
		for(int v=0;v<1<<n;v+=s){
			for(int i=0;i<mid;i++){
				w[v+i]=(w[v+i]+fl*w[v+mid+i]+mod)%mod;
			}
		}
	}
}
void fwt3(long long *w,int fl){
	for(int s=2;s<=1<<n;s<<=1){
		int mid=s>>1;
		for(int v=0;v<1<<n;v+=s){
			for(int i=0;i<mid;i++){
				long long t1=w[v+i],t2=w[v+mid+i];
				w[v+i]=(t1+t2)%mod;w[v+mid+i]=(t1-t2+mod)%mod;
				if(fl==-1){
					w[v+i]=w[v+i]*ny2%mod;
					w[v+mid+i]=w[v+mid+i]*ny2%mod;
				}
			}
		}
	}
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<1<<n;i++) scanf("%lld",&v1[i]);
	for(int i=0;i<1<<n;i++) scanf("%lld",&v2[i]);
	
	pt();fwt1(a,1);fwt1(b,1);
	gt();fwt1(c,-1);out();
	
	pt();fwt2(a,1);fwt2(b,1);
	gt();fwt2(c,-1);out();
	
	pt();fwt3(a,1);fwt3(b,1);
	gt();fwt3(c,-1);out();
	
	return 0;
}

子集卷积

C k = ∑ i ⊆ k A i × B k − i C_k=\sum\limits_{i\subseteq k}A_i\times B_{k-i} Ck=ikAi×Bki,也可以写成 C k = ∑ i ∣ j = k , i & j = 0 A i × B j C_k=\sum\limits_{i|j=k,i\& j=0}A_i\times B_j Ck=ij=k,i&j=0Ai×Bj.

相对于或卷积来说,它多了一个限制,即必须是两个二进制位没有交集的下标进行或运算。

可以按二进制位为 1 1 1的数量来分类,设 d i d_i di表示 i i i中二进制位为 1 1 1的位数。那么

C k = ∑ i ∣ j = k , d i + d j = d k A i × B j C_k=\sum\limits_{i|j=k,d_i+d_j=d_k}A_i\times B_j Ck=ij=k,di+dj=dkAi×Bj

多项式 V  ⁣ A i V\!A_i VAi表示二进制位为 1 1 1的个数为 i i i A A A值,多项式 V  ⁣ B i V\!B_i VBi表示二进制位为 1 1 1的个数为 i i i B B B值,二进制位为 1 1 1的个数不等于 i i i的数在 V  ⁣ A i , V  ⁣ B i V\!A_i,V\!B_i VAi,VBi中值为 0 0 0

对于每一个 i i i,对 V  ⁣ A i V\!A_i VAi V  ⁣ B i V\!B_i VBi做一次异或卷积的 F W T FWT FWT。令 V k = ∑ j = 0 i ( V  ⁣ A j ) k × ( V  ⁣ B i − j ) k V_k=\sum\limits_{j=0}^i(V\!A_j)_k\times (V\!B_{i-j})_k Vk=j=0i(VAj)k×(VBij)k,将 V k V_k Vk逆变换回来。若 k k k中二进制位为 1 1 1的个数为 i i i,则 C k = V k C_k=V_k Ck=Vk

例题

P6097 【模板】子集卷积

子集卷积的模板。

code

#include<bits/stdc++.h>
using namespace std;
int n;
long long a[1<<21],b[1<<21],c[1<<21],ct[1<<21],ans[1<<21],ta[22][1<<21],tb[22][1<<21];
const long long mod=1e9+9;
void fwt(long long *w,long long fl){
	for(int s=2;s<=(1<<n);s<<=1){
		int mid=s>>1;
		for(int v=0;v<(1<<n);v+=s){
			for(int i=0;i<mid;i++){
				w[v+mid+i]=(w[v+mid+i]+fl*w[v+i]+mod)%mod;
			}
		}
	}
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<(1<<n);i++){
		ct[i]=ct[i-(i&(-i))]+1;
	}
	for(int i=0;i<(1<<n);i++){
		scanf("%lld",&a[i]);
		ta[ct[i]][i]=a[i];
	}
	for(int i=0;i<(1<<n);i++){
		scanf("%lld",&b[i]);
		tb[ct[i]][i]=b[i];
	}
	for(int i=0;i<=n;i++){
		fwt(ta[i],1);fwt(tb[i],1);
	}
	for(int i=0;i<=n;i++){
		for(int j=0;j<=i;j++){
			for(int k=0;k<(1<<n);k++){
				c[k]=(c[k]+ta[j][k]*tb[i-j][k]%mod)%mod;
			}
		}
		fwt(c,-1);
		for(int j=0;j<(1<<n);j++){
			if(ct[j]==i) ans[j]=c[j];
			c[j]=0;
		}
	}
	for(int i=0;i<(1<<n);i++){
		printf("%lld ",ans[i]);
	}
	return 0;
}

总结

F W T FWT FWT主要是要找到变换 T T T,然后用一种快速的方法变换,将两个多项式相乘后再用逆变换变回来,即可得出答案。

一般情况下,时间复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值