迭代器协议
1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代(只能往后走不能往前退)
2.可迭代对象:实现了迭代器协议的对象(如何实现:对象内部定义一个__iter__()方法)
3.协议是一种约定, 可迭代对象实现了迭代器协议, Python的内部工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象
for循环机制
for循环的本质:循环所有对象,全部都是使用迭代器协议
for循环就是基于迭代器协议提供了一个统一的可以遍历所有对象的方法,即在遍历之前,先调用对象的__iter__方法将其转换成一个迭代器,然后使用迭代器协议去实现循环访问,这样所有的对象就都可以通过for循环来遍历了
列表,字符串,元组,字典,集合,文件对象等本质上来说都不是可迭代对象,在使用for循环的时候内部是先调用他们内部的__iter__方法,使他们变成了可迭代对象,然后再使用可迭代对象的__next__方法依次循环元素,当元素循环完时,会触发StopIteration异常,for循环会捕捉到这种异常,终止迭代
访问方式常见的有下标方式访问,迭代器方式访问,for循环访问
1 下标访问方式 2 li = [1,2,3,4] 3 print(li[0])#下标访问
#迭代器协议访问 li = [1,2,3,4] f = li.__iter__()#第一步,先通过内部的_iter_方法,先把对象变成可迭代对象 print(f.__next__())#对可迭代对象用_next_方法取值 print(f.__next__()) print(f.__next__()) print(f.__next__()) print(f.__next__())#StopIteration,超出边界会报错
#for循环访问 #for循环l本质就是遵循迭代器协议的访问方式,先调用diedai_l=l.__iter__()方法,或者直接diedai_l=iter(l),然后依次执行diedai_l.next(),直到for循环捕捉到StopIteration终止循环 li = [1,2,3,4] for i in li:#li_iter = li._iter_() print(i)#li_iter._next_
1 #用while去模拟for循环做的事情 2 diedai_l=l.__iter__() 3 while True: 4 try: 5 print(diedai_l.__next__()) 6 except StopIteration: 7 print('迭代完毕了,循环终止了') 8 break
生成器
生成器类似于一种数据类型,这种数据类型自动实现了迭代器协议(其他的数据类型需要调用自己内置的__iter__方法),所以生成器就是可迭代对象
生成器分类及在python中的表现形式: (python有两种不同的方式提供生成器)
1.生成器函数:常规函数定义,但是,使用yield语句而不是使用return语句返回结果.yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行
2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表,按需取出对象
为何使用生成器和生成器的优点
python使用生成器对延迟操作提供了支持.所谓延迟操作,是指在需要的时候才产生结果,而不是立即产生结果.这也是生成器的主要好处,节省内存
生成器表达式和列表解析
三元表达式: 值1 if 条件 else 值2
列表解析: s=[三元表达式],列表解析生成的是一个真实存在内存中的列表对于比较大的列表,比较耗内存空间
1 count=[x for x in range(3)]#列表解析
生成器表达式s=(三元表达式)
1 count=(x for x in range(3))#生成器本身就是迭代器,遵循迭代器协议
1 sum(x ** 2 for x in xrange(4))#sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,不用多此一举先生成列表
生成器表达式2:yield函数,生成器使用yield语句返回一个值.yield语句挂起该生成器函数的状态,保留足够的信息,以便之后从它离开的地方继续执行
send():可对yeild函数传参数,参数会赋值给yield函数前的变量,通过send()可实现伪并发功能
1 1 def count(): 2 2 print(1) 3 3 yield ("a")#相当于return,不同于return,yield可以返回多个值 4 4 print(2) 5 5 yield ("b") 6 6 f=count() 7 7 print(f.__next__())#保留当前执行状态,下次执行从上次状态处继续往下执行 8 8 print(f.__next__()) 9 9 print(f.__next__())#执行只能一直往前走,不能往后,只能执行一次,执行完继续执行会触发StopIteration
1 #伪并发 2 import time#导入时间模块 3 def guke(name): 4 print("我是%s,我准备吃包子了"%name) 5 while True: 6 baozi = yield 7 time.sleep(1) 8 print("我是%s,我把包子%s吃掉了"%(name,baozi)) 9 def shengchanzhe(x): 10 xiaofeizhe = guke(x) 11 xiaofeizhe.__next__() 12 for i in range(100): 13 time.sleep(1) 14 xiaofeizhe.send(i)#将i赋值给guke()函数中yield前面的包子,下次执行时从此往后执行 15 use_name = input("欢迎您!怎么称呼您:") 16 print("请稍等!包子马上就给您端上来") 17 shengchanzhe(use_name)
使用yield实现协程
def f1(): print(11) yield print(22) yield print(33) def f2(): print(55) yield print(66) yield print(77) v1 = f1() v2 = f2() next(v1) # v1.send(None) next(v2) # v1.send(None) next(v1) # v1.send(None) next(v2) # v1.send(None) next(v1) # v1.send(None) next(v2) # v1.send(None)