- 博客(117)
- 资源 (21)
- 收藏
- 关注
原创 Python 数据分析工具包(三)
深度学习模型的构建、训练和评估过程。支持卷积神经网络(CNN)、循环神经网络(RNN)、自动编码器、生成对抗网络(GAN)等各种类型的神经网络。注:TensorFlow内容过多,难度较大,需要学习可以看参考文档和官网。注:pytorch内容过多,难度较大,需要学习可以看参考文档和官网。注:Keras内容过多,难度较大,需要学习可以看参考文档和官网。API,它基于Python编写,旨在。Python的Keras是一个。
2024-12-06 10:13:19
953
原创 Python 数据分析工具包(二)
SciPy广泛应用于科学和工程领域,特别是在数据分析、机器学习、物理模拟、图像处理、信号处理等方面,提供了强大的数学计算功能。Scikit-learn提供了丰富的算法实现,包括分类、回归、聚类、降维等,以及数据预处理、特征选择、模型评估等完整的。Scikit-learn广泛应用于数据科学、机器学习、人工智能等领域,成为许多数据科学家和机器学习工程师的首选工具。提供了一个高级接口,用于绘制各种吸引人的统计图形,默认样式和调色板使统计图形更加美观。注:中间还有一些过程,在这儿就不展示了,需要的请点击参考文档。
2024-12-05 10:47:50
2423
10
原创 Python 数据分析工具包(一)
提供了创建条形图、饼图、直方图、散点图等的功能;支持各种绘图类型,包括线图、条形图和散点图,并允许自定义可视化的各个方面,还可以以不同格式导出绘图。Matplotlib可用于绘制各种静态、动态以及交互式的2D图表(包括部分3D图表),如折线图、散点图、条形图、直方图、饼图等。此外,Matplotlib还支持多种输出格式,包括PNG、PDF、SVG、EPS等,可以方便地。Python的NumPy库是一个用于科学计算的基础包,提供了大量的数学。Python的Matplotlib库是一个功能强大且广泛使用的。
2024-12-05 10:40:49
885
原创 Python 数据分析用库 获取数据(二)
Python的Beautiful Soup(常被称为“美丽汤”)是一个用于解析HTML和XML文档的第三方库,它在网页爬虫和数据提取领域具有广泛的应用。注:Scrapy是一个框架项目,一般是在pycharm里面进行建立之后,根据Scrapy的结果进行构建对应的代码和爬虫逻辑。Python的Scrapy是一个基于Twisted的异步处理框架,是纯Python实现的开源网络。
2024-12-04 10:12:47
1591
2
原创 Python 数据分析用库 获取数据(一)
Requests库提供了简单而强大的HTTP客户端接口,能够发送各种类型的HTTP请求(如GET、POST、PUT、DELETE等),并处理。(如Chrome、Firefox、Safari、Edge等),通过代码操作浏览器,模拟用户的行为,如点击、输入文本、滚动页面、获取信息等。它支持多种编程语言(如Python、Java、C#等)和。状态代码有三位数字组成,第一个数字定义了响应的类别,共分。Python的Requests库是一个非常强大和流行的。
2024-12-04 10:07:56
1198
原创 AI数据分析工具(二)
注:可以生产图像并且中间会自行解决代码报错问题。注:先进行数据表格分析,之后在进行图像生成。注:只生成代码不直接生成图像。
2024-11-29 10:21:57
3080
原创 AI数据分析工具(一)
(网页版本)地址:https://lookerstudio.google.com/overview(网页版)地址:https://askexcel.cn/space(网页版)地址:https://chatexcel.com/#/home(网页版)地址:https://julius.ai/
2024-11-29 10:06:00
1778
原创 国内 AI 辅助工具的安装(二)
在右下角的 登录 MarsCode AI 提示框中,点击 登录 按钮,然后使用你的 豆包 MarsCode 帐号登录插件。选中代码片段后,你可以向豆包 MarsCode 编程助手发送代码解释指令。豆包 MarsCode 编程助手会阅读并理解当前代码,然后自动补全后续代码。成功登录后,IDE 右侧将出现 MarsCode AI 对话框,你可以开始与 AI 助手对话。点击去登录链接,唤起登录页面,支持百度、微信、微博、QQ扫描登录。安装完成后,点击 重启 IDE 按钮,重启 IDE。
2024-11-28 10:49:30
1359
原创 国内 AI 辅助工具的安装(一)
框选代码 > 单击鼠标右键 > 选择腾讯云 AI 代码助手 > 修复代码调出对话窗口再要求 AI 代码助手进行代码检查。在 IDEA 的编辑界面进行代码修复,AI 代码助手将自动把代码内容替换成正确的结果,可以选择接受、在文档中查看或者放弃修改。当开发者需要处理别人的代码,或者在既有代码中进行延展开发时,可以通过 AI 代码助手快速理解和解释初始代码,降低理解成本。在编辑器中,可以直接通过自然语言的方式描述需要实现的需求,通义灵码可以在编辑器中生成代码建议,单击 Tab 可直接采纳。安装步骤(个人版本)
2024-11-28 10:27:20
973
原创 python requests简介
requests库提供了一套直观的API,用于执行常见的HTTP操作,如GET、POST等,并且能够处理复杂的请求,如带参数的URL、HTTP头部、表单数据、JSON数据等。例如,“Connection: close”表示在完成本次请求的响应后断开连接,“Connection: keep-alive”表示保持连接以等待后续请求。上面的示例代码中方式一和方式二达到的效果都是一样的,但是推荐使用方式一,因为在后面的接口自动化测试中便于参数化。这不是一个具体的请求头字段,但它是理解HTTP请求的基础。
2024-11-26 17:18:35
1169
原创 Python Selenium简介(三)
可以通过执行 JavaScript 代码来修改元素的属性,从而触发点击事件。在某些情况下,可以使用 Python 的 pyautogui 或 Java 的 Robot 类来模拟鼠标点击,从而触发点击事件。有时候使用 Selenium 的 click() 方法可能不够稳定,可以通过执行 JavaScript 代码来模拟点击事件。对于某些元素,可以使用 send_keys(Keys.RETURN) 方法来模拟按下回车键,从而触发点击事件。通过选中要点击的元素,然后使用 click() 方法来触发点击事件。
2024-11-26 15:45:41
1095
原创 Python Selenium介绍(二)
注意:对于css的属性值来说,可以加引号也可以不加,注意属性的引号和整个CSS表达式的引号要进行区分。find_element(By.TAG_NAME,‘xx’)tag name定位,根据元素的标签名定位,定位到的标签不一定是唯一的。find_element(By.NAME,‘xx’)name定位,根据元素的name属性值定位,定位到的标签不一定是唯一的。(1)类选择器--------.XXX选择class属性为xxx的元素。(2)id选择器-------- #XXX选择id属性为xxx的元素。
2024-11-25 18:22:11
1600
原创 Python Selenium介绍(一)
它提供了一组工具和库,可以用多种编程语言(如Java、Python、C#等)编写测试脚本,模拟用户在浏览器中的行为,如点击链接、填写表单、提交数据等。Selenium可以在各种浏览器上运行,包括Chrome、Firefox、Safari等,它还可以与其他测试框架和工具集成,帮助开发人员和测试人员自动化执行各种测试任务,提高测试效率和质量。当我们创建浏览器驱动对象的时候,他会创建一个新的干净的浏览器,来供我们使用。所以,我们在浏览器上设置的东西,也可以通过代码实现设置好。浏览器下载文件后,下载的地址设置。
2024-11-25 16:32:03
1187
原创 python scipy简介
scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法constants:物理和数学上的一些常数fftpack:快速傅里叶变换integrate:积分和常微分方程的求解interpolate:插值和平滑的样条函数io:输入和输出linalg:线性代数ndimage:N维的图像处理ord:回归正交距离optimize:优化和寻根方程signal:信号处理sparse:稀疏矩阵。
2024-11-22 14:17:53
937
原创 Python Seaborn(基于Matplotlib构建)
seaborn是基于matplotlib的数据集分布可视化库。它在matplotlib的基础上,进行了更高级的封装,从而使得绘图更加容易,不需要经过大量的调整,就能使图像变得精致。seaborn :带着定制主题和高级界面控制的Matplotlib扩展包,兼容Numpy与Pandas数据结构。
2024-11-22 13:47:21
1172
原创 Python Scikit-learn简介(二)
特征提取是将原始数据转换为更适合机器学习模型的特征表示。Scikit-learn提供了多种特征提取工具,如。机器学习的数据,可以划分为训练集、验证集和测试集,也可以划分为训练集和测试集。数据清洗是数据预处理的第一步,涉及处理缺失值、重复数据、异常值等。标准化和归一化是调整特征尺度的重要步骤,有助于提高某些算法的性能。处理缺失值是数据预处理中的常见任务。Scikit-learn提供了。用于文本数据的词频统计。
2024-11-21 15:09:01
1072
1
原创 Python Scikit-learn简介
是一个开源的Python机器学习库,它建立在NumPy、SciPy和Matplotlib之上,提供了大量的机器学习算法和工具,适用于各种机器学习任务,如分类、回归、聚类、降维等。Scikit-learn的设计遵循简洁、一致的API接口,使得用户可以轻松地从数据预处理到模型评估的整个机器学习流程中进行操作。它还提供了丰富的文档和示例,帮助用户快速上手和解决问题。
2024-11-21 14:02:05
1661
原创 Python Pillow图像编辑
Pillow不仅是 PIL 库的“复制版”,而且它又在 PIL 库的基础上增加了许多新的特性。Pillow 发展至今,已经成为了比 PIL 更具活力的图像处理库。Pillow 的初衷只是想作为 PIL 库的分支和补充,如今它已是“青出于蓝而胜于蓝”。Pillow 是 Python 中较为基础的图像处理库,主要用于图像的基本处理,比如裁剪图像、调整图像大小和图像颜色处理等。
2024-11-18 15:32:58
1454
1
原创 Python Matplotlib绘图
Matplotlib 是一个Python的2D绘图库。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。matplotlib 是一个用于创建静态、动态和交互式可视化图形的 Python 库。它被广泛用于数据可视化,并且可以与多种操作系统和图形后端一起工作。matplotlib 提供了一套与MATLAB相似的命令 API,适合交互式制图,也可以作为绘图控件嵌入到其他应用程序中。
2024-11-18 14:13:11
1037
原创 数字图像处理(c++ opencv):图像分割-基本边缘检测
根据上面两个的公式或定义,拉普拉斯可以计算图像的二阶导数,高斯可以构建不同尺度的算子,满足上面对算子的两个要求。高斯:二维高斯分布常用于图像的卷积滤波,通过该分布可以取不同尺度的高斯核。(b)尺度能够调节,以便尺度较大的算子能够检测模糊边缘(模糊的边缘宽度较大),小算子检测清晰边缘。(b)边缘(灰度值突变处)在一阶导数中表现为峰值或谷值,在二阶导数中表现为过零点。(a)灰度变化与图像尺度是相关的,即不同图像对应不同大小的算子;(a)是一个微分算子,能够计算图像中每个点的一阶或二阶导数;
2024-11-15 14:04:15
1063
1
原创 数字图像处理(c++ opencv):彩色图像处理-彩色基础与彩色模型
(3)饱和度:指相对的纯度,或与一种色调混合的白光量。比如深红色(红色+白色)和淡紫色(紫色+白色)是不饱和的,白色越多,越不饱和。(2)色调:混合光波中的主导光波属性,即被观察者感知的主导色。如描述一个物体为红色,就是这个物体的色调为红色。(2)CMY(青、深红、黄)和CMYK(青、深红、黄、黑):一般用于彩色打印;(1)RGB(红、绿、蓝):一般用于彩色显示器和彩色摄像机;(3)HSI(色调、饱和度、亮度):描述和解释颜色;颜色特性:亮度、色调、饱和度。(1)亮度:即强度,如灰度值。
2024-11-15 09:30:56
1046
原创 数字图像处理(c++ opencv):图像复原与重建-常见的滤波方法--自适应滤波器
(3)若两个方差相等,则希望滤波器返回Sxy中像素的算术平均值。当局部区域的性质与整个图像的性质相同时会出现这个条件,且平均运算会降低局部噪声。高度相关,则滤波器返回(x, y)处的一个接近于g的值。高局部方差通常与边缘相关,且应保留这些边缘。为零,则滤波器仅返回(x, y)处的值g。因为噪声为零时,(x, y)处的g等于f.(2)计算滤波器窗口内像素的均值。(1)计算噪声图像的方差。与中值滤波不同之处在于。,这样可以减少图像的。
2024-11-14 14:16:25
567
原创 数字图像处理(c++ opencv):图像复原与重建-常见的滤波方法--统计排序滤波器
最大值滤波器就是将滤波窗口内像素灰度值的最大值作为滤波结果。最小值滤波可以削弱与暗色区域相邻的明色区域,可以用来。最小值滤波器就是将滤波窗口内像素灰度值的。修正阿尔法均值滤波器适合。相同的线性平滑滤波器相比,能有效地。中点滤波器将滤波窗口内像素灰度值。的均值作为滤波结果。,如高斯噪声和均匀噪声。,如均匀噪声+椒盐噪声。的暗色区域,可以用来。滤波器和平均滤波器的。
2024-11-14 11:53:00
749
原创 图像复原与重建-常见的滤波方法--均值滤波器(C++)
将滤波窗口内所有像素灰度值的平均值作为滤波结果。几何均值滤波器的平滑与算数平均滤波器相比,当Q为正值时,适合处理胡椒噪声;当Q为负值时,适合处理盐粒噪声;当Q=-1时,为谐波均值滤波。当Q为正值时,处理胡椒噪声;当Q为负值时,处理盐粒噪声;当Q=0时,为算数均值滤波;为了计算方便,这里一般假设。谐波均值滤波器可以处理。
2024-11-13 11:37:40
624
原创 常见的噪声模型+图像中噪声模型的估计+常见的滤波方法(C++)
高斯噪声的概率密度函数表示为:对于上述六种噪声,与其他噪声图像,能够区分,图像则。
2024-11-13 11:26:12
309
原创 Python OpenCV孤立点检测
以下是一个简单的例子,使用OpenCV的findContours和convexHull来识别并绘制孤立点。(1)本节所称的孤立点检测,是绝对意义上的孤立点,即一个孤立的像素。人眼所能感知、识别的孤立点,通常来说其实是一个微小的区域,而不是孤立的一个像素,因此并不能用这种方法检测。当滤波器在一个点的响应超过设定阈值 T,则认为在卷积核的中心检测到了孤立点,标记为 1,而其它点都被标记为 0,从而产生一副二值图像。,是检测嵌在一幅图像的恒定区域或亮度几乎不变的区域里的孤立点。孤立点的检测以二阶导数为基础。
2024-11-12 10:21:43
763
原创 yolo v11相关文件
最终,在resource同级目录中新建dataset用于训练,里面严格命名images、labels,以上两个目录下按照train/val/test的方式复制resource的labels、split_image2目录中的文件,显得更为清晰,也可以自行优化。xml_to_txt.py将xml格式文件转换成txt文件,并按dataSet的划分,在labels下的train/val/test文件夹中生成txt标注格式,labels下的三个txt存放相关的图片路径。
2024-11-12 09:58:06
538
原创 C++ OpenCV 理想滤波
因此现实很少使用理想低通滤波器,多使用高斯低通滤波或巴特沃斯低通滤波。,即保留了低频区,滤除了高频区,达到滤波的目的。噪声代码(.h文件)
2024-11-07 17:18:24
466
原创 Python OpenCV 傅里叶变换
任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。也就是说,傅里叶变换是一种特殊的积分变换,它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。频率域处理是先将图像变换到频率域,然后在频率域对图像进行处理,最后再通过反变换将图像从频率域变换到空间域。返回的结果与使用Numpy进行傅里叶变换得到的结果是一致的,但是它返回的值是双通道的,第1个通道是结果的。不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。的变换后,得到了原始图像的。
2024-11-07 10:51:13
1019
原创 Python OpenCV 滤波
使用5*5高斯滤波消除噪声,可以计算图像的四个方向上的边缘(0,45,90,135),取局部的最大值,多了一个阈值计算。高于阈值我们认为是边缘,低于阈值就不是边缘,显然A为边缘,如果,但是B和C介于最大值最小值之间,BC既不是边缘也是边缘,但是C与A在一条直线上,所以C也是边缘。的噪声有很好的抑制作用。比较强,噪声比较少的图像来说,可以将去噪的程度放大,对以后的相关分析的结果就会有更少的噪声。Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,
2024-11-06 14:30:29
1310
原创 python opencv灰度变换
用来图像增强,提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正。:由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。伽马值小于1时,会拉伸图像中灰度级较低的区域,同时会压缩灰度级较高的部分。伽马值大于1时,会拉伸图像中灰度级较高的区域,同时会压缩灰度级较低的部分。:对原图像像素值的颜色进行反转,即黑色变为白色,白色变为黑色。
2024-11-06 11:06:20
1090
原创 Python的自然语言生成与对话系统介绍2
定义:Natural Language Processing (NLP) 是人类与计算机之间进行通信时使用的自然语言(如英语、法语等)进行处理的技术,是一个复杂的、跨领域的学科。分类:NLP 可以分为自然语言理解 NLU、自然语言生成 NGL、信息抽取 IE、情感分析 Sentiment Analysis、机器翻译 MT 等。应用:NLP 被广泛应用于搜索引擎、聊天机器人、社交媒体监测、自动摘要等领域。大模型。
2024-11-05 15:42:04
804
原创 Python的自然语言生成与对话系统介绍
自然语言生成(Natural Language Generation,NLG)和对话系统是人工智能领域的重要研究方向。NLG 涉及将计算机理解的信息转换为自然语言文本,而对话系统则涉及计算机与用户之间的自然语言交互。Python 作为一种易于学习、易于使用的编程语言,在这两个领域中发挥了重要作用。核心概念与联系核心算法原理和具体操作步骤数学模型公式详细讲解具体最佳实践:代码实例和详细解释说明实际应用场景工具和资源推荐总结:未来发展趋势与挑战。
2024-11-05 15:32:33
943
原创 Python OpenCV形态学处理和图像梯度
ddepth参数:一般在别的图像处理函数中,直接置为-1,表示处理成与原图像一样深度的图像,但是由于此函数处理过程中会出现负数,故与sobel算子一样,将它赋值为cv2.CV_64F。它需要两个输入,一个是我们的原始图像,第二个是决定操作性质的结构元素或内核。只有当内核下的所有像素都为 1 时,原始图像中的像素(1 或 0)才会被视为 1,否则会被侵蚀(变为零)。所以它会增加图像中的白色区域,或者增加前景对象的大小。五个参数分别表示:原图像1,原图像1的系数,原图像2,原图像2的系数,修正值。
2024-11-04 15:00:12
1075
原创 Python OpenCV 图像处理
在图像产生、传输和复制过程中,常常会因为多方面原因而被噪声干扰或出现数据丢失,降低了图像的质量(某一像素,如果它与周围像素点相比有明显的不同,则该点被噪声所感染)。因此,我们得到了同一图像不同区域的不同阈值,对于不同光照下的图像,得到了更好的结果。阈值参数:threshold_value = 127,像素值大于127的地方将根据选择的阈值类型做相应处理,max_value = 255 表示阈值操作后的最大值。cv.THRESH_TOZERO_INV:小于阈值的像素值保持不变,大于阈值的像素值设为 0。
2024-11-04 14:28:56
1791
5
原创 Python OpenCV 图像改变
使用OpenCV库的cv2.fastNlMeansDenoisingColored()函数来去除图像中的噪声。图像特征提取是从图像中提取有用的信息,如边缘、角点、形状等。使用OpenCV库的cv2.convertScaleAbs()函数来增强图像的对比度。图像滤波是图像处理中的一个基础任务,用于去除图像中的噪声和细节,增强感兴趣的结构。图像分割是将图像分成多个部分的过程,每个部分代表图像中的一个对象或区域。图像增强是指通过调整图像的亮度、对比度、饱和度等参数来改善图像质量。函数来去除图像中的噪声。
2024-11-01 14:18:53
631
原创 Python OpenCV图片读取和保存
imwrite(保存图像名称及格式,图像名称)的功能就是新建一个显示窗口,用来显示图像。imread(图像路径, 图像形式);功能:imwrite函数用于显示图像。功能:imshow函数用于显示图像。显示的图像大小不能改变(默认形式)imshow(窗口名称,图像名称)
2024-11-01 14:02:55
1002
原创 阿里-通义灵码简单使用
在开启自动云端生成的模式下,通义灵码会根据当前代码文件及相关代码文件的上下文,自动为你生成行级/函数级的代码建议,此时你可以使用快捷键采纳、废弃,或查看不同的代码建议。在编辑器中,可以直接通过自然语言的方式描述需要实现的需求,通义灵码可以在编辑器中生成代码建议,单击。,选中代码后,在智能问答窗口的输入框中输入你的问题,通义灵码将围绕选中代码与你开展对话。开启本地离线模型、云端大模型同时开启的情况下,行间生成时优先推荐云端大模型的代码建议;当你编码遇到问题,缺乏具体解决思路时,可单击。
2024-10-29 10:30:27
819
Controllable Image Synthesis of Industrial Data Using Stable Diffusion
2024-12-25
LLama3、技术报告
2024-09-27
阿里Java的编码规范
2023-01-04
简历识别方案--怎么提高简历的OCR识别效果
2024-11-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人