- 博客(10)
- 收藏
- 关注
转载 线性回归基础--用于预测
线性回归可以说是机器学习中最基本的问题类型了,这里就对线性回归的原理和算法做一个小结。 1. 线性回归的模型函数和损失函数由来 线性回归遇到的问题一般是这样的。我们有m个样本,每个样本对应于n维特征和一个结果输出,如下: 由上面推到,可知线性回归可以使用最小二乘法进行求解: 由于矩阵法表达比较的简洁,后面我们将统一采...
2019-09-23 13:35:00 725
转载 机器学习中常见的损失函数
损失函数是机器学习中常用于优化模型的目标函数,无论是在分类问题,还是回归问题,都是通过损失函数最小化来求得我们的学习模型的。损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数是指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常表示为:θ*是我们通过损失函数最小化要求得的参数,一般都是通过梯度下降法来求得1、0-1损失函数 0-1...
2019-09-23 11:41:00 343
转载 最小二乘法(least squares)介绍
最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。1.最小二乘法的原理与要解决的问题 最小二乘法是由勒让德在19世纪发现的(也有争议为高斯发明),形式如下式: 观测值就是我们的多组样本,理论值就是我们的假设拟合函数。目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使...
2019-09-23 11:04:00 4791
转载 梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。 比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x,∂f/...
2019-09-23 09:22:00 194
转载 python基础库-Pandas
一、Series import numpy as np import pandas as pd #下面是创建Series的三种方法 #方法1:s1 = pd.Series([1,2,3,4]) #方法2:s2 = pd.Series(np.arange(10)) # 通过numpy.arange创建 #方法3:s3 = pd.Series({'1':1,'2':2...
2019-08-22 12:45:00 113
转载 python基础库-Numpy
1:Ndarray对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。 2:矩阵的属性: import numpy as np a = np.arange(1...
2019-08-22 12:36:00 133
转载 python基础库-Numpy
1:Ndarray对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。 2:矩阵的属性: import numpy as np a = np.arange(1...
2019-08-22 12:35:00 104
转载 基础1-元组/列表/字符串/字典/集合/文件/字符串编码转变
一:列表: names=["4ZhangYang","Guyun","xXiangPeng",["alex","jack"],"ChenRonghua","XuLiangchen"]print(names[1:3])#切片顾手不顾尾,取出第二/三个print(names[3])#切片取第四个print(names[-2:])#切片取最后两个#增加:nam...
2019-08-14 12:44:00 256
转载 Window10上安装Mysql8.0.16安装教程
转载于:https://www.cnblogs.com/yifanrensheng/p/11144385.html
2019-07-06 22:13:00 130
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人