用1 x 2的多米诺骨牌填满M x N矩形的方案数(完美覆盖)

这篇博客探讨了如何使用1 x 2的多米诺骨牌填充M x N矩形的问题,特别是当M=3时。通过分析转移矩阵并利用矩阵快速幂的方法,可以计算出不同的填充方案数。文章提供了相关资源链接以供进一步阅读。
摘要由CSDN通过智能技术生成

题意

用 $1 \times 2$ 的多米诺骨牌填满 $M \times N$ 的矩形有多少种方案,$M \leq 5,N < 2^{31}$,输出答案模 $p$.

分析

当 $M=3$时,假设前 $n-2$列已经填满,$n-1$ 列不全,现要向左推进一列。

 每列只有8种情况,如果一种情况能转移到另一种则连一条边。

答案就是从“111”出发恰好走 $n$ 步又回到“111” 的路径数,这个问题等价于求转移矩阵的 $n$ 次方.

确定转移矩阵,使用矩阵快速幂,$mat[7][7]$ 就是答案。

实现

$M=3$ 时,

#include<cstdio>
#include<cstring>
using namespace std;

typedef long long ll;
stru
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值