用1 x 2的多米诺骨牌填满M x N矩形的方案数(完美覆盖)

这篇博客探讨了如何使用1 x 2的多米诺骨牌填充M x N矩形的问题,特别是当M=3时。通过分析转移矩阵并利用矩阵快速幂的方法,可以计算出不同的填充方案数。文章提供了相关资源链接以供进一步阅读。
摘要由CSDN通过智能技术生成

题意

用 $1 \times 2$ 的多米诺骨牌填满 $M \times N$ 的矩形有多少种方案,$M \leq 5,N < 2^{31}$,输出答案模 $p$.

分析

当 $M=3$时,假设前 $n-2$列已经填满,$n-1$ 列不全,现要向左推进一列。

 每列只有8种情况,如果一种情况能转移到另一种则连一条边。

答案就是从“111”出发恰好走 $n$ 步又回到“111” 的路径数,这个问题等价于求转移矩阵的 $n$ 次方.

确定转移矩阵,使用矩阵快速幂,$mat[7][7]$ 就是答案。

实现

$M=3$ 时,

#include<cstdio>
#include<cstring>
using namespace std;

typedef long long ll;
stru
对于给定长度为3n的棋盘,使用1x3大小的多米诺骨牌完全覆盖这个棋盘的不同方式数量的问题属于组合数学中的一个特定问题。 当考虑如何用1x3的多米诺骨牌来填充宽度固定而长度可以变化的空间时,这个问题可以通过递归关系或者动态规划的方法解决。设f(n)表示填满长度为3n的区域的方式数,则可以根据最后一个放置的多米诺的位置建立递推关系。 一种可能的情况是最后一块多米诺正好放在最右边,占据最后三个单元格,在这种情况下剩下的问题是求解f(n-1),即剩余长度为3*(n-1)的部分有多少种铺法。 另一种情况可能是最后两块多米诺以某种模式占据了右端六个位置中的四个,这样就留出了前面3*(n-2)+1个空间需要被填补,但因为无法单独留下一个单位格子未被覆盖,所以这种情况实际上不会发生。 因此,只有一种有效的递归分解方法,就是每次移除一块完整的1x3多米诺,这给出了简单的递推公式: $$ f(n) = f(n-1), \text{for } n > 0 $$ 并且初始条件应该是$f(0)=1$(代表没有多米诺的情况下有唯一的一种“空”配置),以及$f(1)$应该等于实际能够计算出来的值,比如通过枚举所有可能性得出的结果。 然而,上述分析仅适用于非常理想化的情形——假设只有直板型的1x3多米诺可用,并且没有任何其他限制因素影响布局选择。实际情况可能会更复杂一些,例如如果允许L形或其他形状的多米诺参与进来的话。 为了给出具体的计算公式,这里提供了一个简化的版本用于理解概念: 对于$n=0$, 即不存在任何3*1矩形要被覆盖, 只有一个解决方案 —— 不放任何多米诺. 对于$n>0$, 我们定义函数T(n): $$ T(n) = \begin{cases} 1 & ,n = 0 \\ T(n-1) &, n > 0 \end{cases} $$ 请注意,这里的简化版忽略了多种排列的可能性,真实的场景下每增加一段3长的距离都会引入新的排列方案数目增长。正确的算法实现通常会涉及记忆化技术或是动态规划表来避免重复计算子问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值