pytorch学习笔记(3)(visdom可视化、正则化、动量、学习率衰减、BN)

一、visdom可视化工具

安装:pip install visdom

启动:命令行直接运行visdom

打开WEB:在浏览器使用http://localhost:8097打开visdom界面

 

二、使用visdom

# 导入Visdom类
from visdom import Visdom
# 定义一个env叫Mnist的board,如果不指定,则默认归于main
viz = Visdom(env='Mnist')

# 在window Accuracy中画train acc和test acc,x坐标都是epoch
viz.line(Y=np.column_stack((acc, test_acc)),
         X=np.column_stack((epoch, epoch)),
         win='Accuracy',
         update='append',
         opts=dict(markers=False, legend=['Acc', 'Test Acc']))
# 在window Loss中画train loss和test loss,x坐标都是epoch
viz.line(Y=np.column_stack((loss.cpu().item(), test_loss.cpu().item())),
         X=np.column_stack((epoch, epoch)),
         win='Loss',
         update='append',
         opts=dict(markers=False, legend=['Loss', 'Test Loss']))

 

三、使用正则化

正则化也叫权重衰减(Weight Decay)

L1和L2正则化可以参考:https://blog.csdn.net/red_stone1/article/details/80755144

在代码中,我们只需要在优化器中使用weight_decay参数就可以启用L2正则化

# 选择一个优化器,指定需要优化的参数,学习率,以及正则化参数
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, weight_decay=0.01)

由于在Pytorch中没有纳入L1正则化,我们可以通过手工实现:

# 正则化超参数lambda
lambd = 0.01
# 所有参数的绝对值的和
regularization_loss = 0

for param in model.parameters():
  regularization_loss += torch.sum(torch.abs(param))

# 自己手动在loss函数后添加L1正则项 lambda * sum(abs)
loss = F.cross_entropy(z, target) + lambd * regularization_loss
optimizer.zero_grad()
loss.backward()

四、使用Momentum动量

使用Momentum,即在使用SGD时指定momentum参数,如果不指定,默认为0,即不开启动量优化模式。

# 选择一个优化器,指定需要优化的参数,学习率,以及正则化参数,是否使用momentum
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.01)

使用Adam时,由于Adam包含了Monmentum,所以他自己指定了Momentum参数的大小,无需我们指定。

五、学习率衰减 Learning rate decay

当学习率太小时,梯度下降很慢。当学习率太大时,可以在某个狭窄区间震荡,难以收敛。

学习率衰减就是为了解决学习率多大这种情况。

当我们在训练一个模型时,发现Loss在某个时间不发生变化(在一个平坦区),则我们要考虑是否是在一个狭窄区间震荡,导致的难以收敛。

 

我们在pytorch中可以使用ReducelROnPlateau(optimizer,'min')来监控loss的值:

from torch.optim.lr_scheduler import ReduceLROnPlateau

# 选择一个优化器,指定需要优化的参数,学习率,以及正则化参数,是否使用momentum
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.01)

# 使用一个高原监控器,将optimizer交给他管理,LR衰减参数默认0.1即一次缩小10倍,patience是监控10次loss看是否变化
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)

# 后面的optimizer.step()使用scheduler.step(loss)来代替,每次step都会监控一下loss
# 当loss在10次(可以设置)都未变化,则会使LR衰减一定的比例

另外,除了上述使用ReducelROnPlateau,还可以使用更为粗暴的StepLR函数,我们可以直接指定在多少step后下降一次LR的值:

from torch.optim.lr_scheduler import StepLR

# 选择一个优化器,指定需要优化的参数,学习率,以及正则化参数,是否使用momentum
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.01)

# 使用StepLR,指定step_size即每多少步衰减一次,gamma为衰减率,0.1代表除以10
scheduler = StepLR(optimizer, step_size = 10000, gamma=0.1)

# 后面的optimizer.step()使用scheduler.step()

六、在全连接层使用batchnorm

 

# -*- coding:utf-8 -*-
__author__ = 'Leo.Z'

import torch
from visdom import Visdom
import numpy as np

import torch.nn.functional as F
from torch.nn import Module, Sequential, Linear, LeakyReLU, BatchNorm1d
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

batch_size = 200
learning_rate = 0.001
epochs = 100

train_data = datasets.MNIST('../data', train=True, download=True,
                            transform=transforms.Compose([
                                transforms.ToTensor(),
                                transforms.Normalize((0.1307,), (0.3081,))
                            ]))

test_data = datasets.MNIST('../data', train=False,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ]))

train_db, val_db = torch.utils.data.random_split(train_data, [50000, 10000])

train_loader = DataLoader(train_db,
                          batch_size=100, shuffle=True)
val_loader = DataLoader(val_db,
                        batch_size=10000, shuffle=True)
test_loader = DataLoader(test_data,
                         batch_size=10000, shuffle=True)


# 网络结构
class MLP(Module):
    def __init__(self):
        super(MLP, self).__init__()

        self.model = Sequential(
            Linear(784, 200),
            #===================== BN-start ======================
            # 这里对第一层全连接层使用BN1d,在多个样本上对每一个神经元做归一化
            BatchNorm1d(200, eps=1e-8),
            # ===================== BN-end =======================
            LeakyReLU(inplace=True),
            Linear(200, 200),
            #===================== BN-start ======================
            # 这里对第二层全连接层使用BN1d,在多个样本上对每一个神经元做归一化
            BatchNorm1d(200, eps=1e-8),
            # ===================== BN-end =======================
            LeakyReLU(inplace=True),
            Linear(200, 10),
            LeakyReLU(inplace=True)
        )

    def forward(self, x):
        x = self.model(x)
        return x


# 定义一个env叫Mnist的board,如果不指定,则默认归于main
viz = Visdom(env='TestBN')

# 定义GPU设备
device = torch.device('cuda')
# model放到GPU
net = MLP().to(device)

# 选择一个优化器,指定需要优化的参数,学习率,以及正则化参数,是否使用momentum
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.01)

for idx, (val_data, val_target) in enumerate(val_loader):
    val_data = val_data.view(-1, 28 * 28)
    val_data, val_target = val_data.to(device), val_target.to(device)

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        # data转换维度为[200,784],target的维度为[200]
        data = data.view(-1, 28 * 28)
        # 将data和target放到GPU
        data, target = data.to(device), target.to(device)
        # data为输入,net()直接执行forward
        # 跑一次网络,得到z,维度为[200,10],200是batch_size,10是类别
        # 由于net在GPU,data也在GPU,计算出的z就在GPU
        # 调用net(data)的时候相当于调用Module类的__call__方法
        z = net(data).to(device)

        # 将loss放到GPU
        loss = F.cross_entropy(z, target).to(device)
        # 每次迭代前将梯度置0
        optimizer.zero_grad()
        # 反向传播,计算梯度
        loss.backward()
        # 相当于执行w = w - dw,也就是更新权值
        optimizer.step()

    ### 每一轮epoch,以下代码是使用分割出的val dataset来做测试
    # 先计算在train dataset上的准确率
    eq_mat = torch.eq(z.argmax(dim=1), target)
    acc = torch.sum(eq_mat).float().item() / eq_mat.size()[0]
    print('Loss:', loss)
    print('Accuracy:', acc)

    # 用val跑一遍网络,并计算在val dataset上的准确率
    # ===================== BN-start =====================
    # 跑网络之前,先将BN层设置为validation模式
    # BN层会自动使用在训练时累计的running_mean和running_var
    net.eval()
    #net.model[1].eval()
    #net.model[4].eval()
    # ===================== BN-end =======================

    val_z = net(val_data).to(device)
    val_loss = F.cross_entropy(val_z, val_target).to(device)
    val_eq_mat = torch.eq(val_z.argmax(dim=1), val_target)
    val_acc = torch.sum(val_eq_mat).float().item() / val_eq_mat.size()[0]
    print('Val Loss:', val_loss)
    print('Val Accuracy:', val_acc)

    # 将loss和acc画到visdom中
    viz.line(Y=np.column_stack((acc, val_acc)),
             X=np.column_stack((epoch, epoch)),
             win='Accuracy',
             update='append',
             opts=dict(markers=False, legend=['Acc', 'Val Acc']))
    # 将val loss和val acc画到visdom中
    viz.line(Y=np.column_stack((loss.cpu().item(), val_loss.cpu().item())),
             X=np.column_stack((epoch, epoch)),
             win='Loss',
             update='append',
             opts=dict(markers=False, legend=['Loss', 'Val Loss']))

使用BN时的ACC和LOSS:

未使用BN时的ACC和LOSS:

 从上述结果可以看出,使用BN后,收敛速度变快。

转载于:https://www.cnblogs.com/leokale-zz/p/11283199.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值