转自:http://blog.csdn.net/lwplwf/article/details/62419087
之前的笔记里实现了softmax回归分类、简单的含有一个隐层的神经网络、卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用。为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西。
TensorFlow提供了一个非常简单的API,即tf.train.Saver
类来保存和还原一个神经网络模型。
下面代码给出了保存TensorFlow模型的方法:
import tensorflow as tf
# 声明两个变量
v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") init_op = tf.global_variables_initializer() # 初始化全部变量 saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型 with tf.Session() as sess: sess.run(init_op) print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比 print("v2:", sess.run(v2)) saver_path = saver.save(sess, "save/model.ckpt") # 将模型保存到save/model.ckpt文件 print("Model saved in file:", saver_path)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
这段代码中,通过saver.save
函数将TensorFlow模型保存到了save/model.ckpt文件中,这里代码中指定路径为"save/model.ckpt"
,也就是保存到了当前程序所在文件夹里面的save
文件夹中。
TensorFlow模型会保存在后缀为.ckpt
的文件中。保存后在save这个文件夹中实际会出现3个文件,因为TensorFlow会将计算图的结构和图上参数取值分开保存。
model.ckpt.meta
文件保存了TensorFlow计算图的结构,可以理解为神经网络的网络结构model.ckpt
文件保存了TensorFlow程序中每一个变量的取值checkpoint
文件保存了一个目录下所有的模型文件列表
下面代码给出了加载TensorFlow模型的方法:
可以对比一下v1、v2的值是随机初始化的值还是和之前保存的值是一样的?
import tensorflow as tf
# 使用和保存模型代码中一样的方式来声明变量
v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型 with tf.Session() as sess: saver.restore(sess, "save/model.ckpt") # 即将固化到硬盘中的Session从保存路径再读取出来 print("v1:", sess.run(v1)) # 打印v1、v2的值和之前的进行对比 print("v2:", sess.run(v2)) print("Model Restored")
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
运行结果:
v1: [[ 0.76705766 1.82217288]]
v2: [[-0.98012197 1.2369734 0.5797025 ]
[ 2.50458145 0.81897354 0.07858191]]
Model Restored
- 1
- 2
- 3
- 4
- 1
- 2
- 3
- 4
这段加载模型的代码基本上和保存模型的代码是一样的。也是先定义了TensorFlow计算图上所有的运算,并声明了一个tf.train.Saver
类。两段唯一的不同是,在加载模型的代码中没有运行变量的初始化过程,而是将变量的值通过已经保存的模型加载进来。
也就是说使用TensorFlow完成了一次模型的保存和读取的操作。
如果不希望重复定义图上的运算,也可以直接加载已经持久化的图:
import tensorflow as tf
# 在下面的代码中,默认加载了TensorFlow计算图上定义的全部变量
# 直接加载持久化的图
saver = tf.train.import_meta_graph("save/model.ckpt.meta") with tf.Session() as sess: saver.restore(sess, "save/model.ckpt") # 通过张量的名称来获取张量 print(sess.run(tf.get_default_graph().get_tensor_by_name("v1:0")))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
运行程序,输出:
[[ 0.76705766 1.82217288]]
- 1
- 1
有时可能只需要保存或者加载部分变量。
比如,可能有一个之前训练好的5层神经网络模型,但现在想写一个6层的神经网络,那么可以将之前5层神经网络中的参数直接加载到新的模型,而仅仅将最后一层神经网络重新训练。
为了保存或者加载部分变量,在声明tf.train.Saver
类时可以提供一个列表来指定需要保存或者加载的变量。比如在加载模型的代码中使用saver = tf.train.Saver([v1])
命令来构建tf.train.Saver
类,那么只有变量v1会被加载进来。
…未完待续