对角巷

欢迎来到对角巷,为了小白兔和艾泽拉斯
私信 关注
零尾
码龄8年

https://github.com/lwplw lulalalulalalulalulalu 嗯?字数还不够啊,那再加点

  • 1,194,213
    被访问量
  • 114
    原创文章
  • 5,432
    作者排名
  • 1,059
    粉丝数量
  • 于 2012-12-20 加入CSDN
获得成就
  • 博客专家认证
  • 获得513次点赞
  • 内容获得509次评论
  • 获得1,033次收藏
  • GitHub 获得106Stars
荣誉勋章
兴趣领域
  • #人工智能
    #算法#深度学习#视觉/OpenCV#Python
TA的专栏
  • Vehicle Re-ID
    3篇
  • 视频压缩
    4篇
  • 深度学习实战教程
    3篇
  • Deep Learning
    76篇
  • Person Re-ID
    18篇
  • OpenCV
    11篇
  • 喔
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

论文笔记29 -- (Vehicle ReID)Going Beyond Real Data: A Robust Visual Representation for Vehicle Re-id

《Going Beyond Real Data: A Robust Visual Representation for Vehicle Re-identification》这是AI City Challenge 2020 Track2(Vehicle ReID)第一名郑哲东大佬的解决方案!!!论文:点这里代码:点这里Zhedong Zheng,Minyue Jiang,Zhigang Wang,Jian Wang,Zechen Bai,Xuanmeng Zhang,Xin Yu,Xiao Tan,
原创
73阅读
0评论
0点赞
发布博客于 24 天前

论文笔记28 -- (Vehicle ReID)VOC-ReID: Vehicle Re-identification based on Vehicle-Orientation-Camera

《VOC-ReID: Vehicle Re-identification based on Vehicle-Orientation-Camera》,这是AI City Challenge 2020 Track2(Vehicle ReID)第二名的解决方案!!!
原创
93阅读
0评论
0点赞
发布博客于 28 天前

论文笔记27 -- (视频压缩)Learned Video Codec with Enriched Reconstruction for CLIC P-frame Coding

《Learned Video Codec with Enriched Reconstruction for CLIC P-frame Coding 》20年12月提交在arXiv上的一篇paper,一个新的基于深度学习的端到端视频编解码框架,看到有大佬已经解读,跟着学习一下!!!论文:点这里David Alexandre, Hsueh-Ming HangDept. of Electronics Engineering, National Chiao Tung University, Taiwan
原创
67阅读
0评论
0点赞
发布博客于 1 月前

论文笔记26 -- (视频压缩)M-LVC: Multiple Frames Prediction for Learned Video Compression

《M-LVC: Multiple Frames Prediction for Learned Video Compression 》DVC的升级版!!!论文:点这里代码:点这里Jianping Lin, Dong Liu, Houqiang Li, Feng WuCVPR 2020Abstract1. Introduction2. Related Work2.1. Learned Image Compression2.2. Learned Video Compression3. P
原创
214阅读
1评论
1点赞
发布博客于 3 月前

嗯?

 
发布Blink于 4 月前

论文笔记25 -- (视频压缩)OpenDVC: An Open Source Implementation of the DVC Video Compression Method

DVC的TensorFlow开源实现!!!DVC是首个端到端优化的深度学习视频压缩方法,在深度视频压缩领域常被视为基准算法。OpenDVC则是瑞士苏黎世联邦理工学院杨韧等人使用Tensorflow复现了DVC并开源了代码(不单是复现,还对DVC做了优化)。
原创
359阅读
0评论
0点赞
发布博客于 4 月前

论文笔记24 -- (视频压缩)DVC: An End-to-end Deep Video Compression Framework

DVC确实是个优秀的算法,在深度学习视频压缩领域也常被视为基准算法,在其后也有多篇对它进行优化改进的paper,并且代码也开源了,值得学习一下。
原创
489阅读
0评论
2点赞
发布博客于 4 月前

论文笔记23 -- (ReID)Receptive Multi-granularity Representation for Person Re-Identification

《Receptive Multi-granularity Representation for Person Re-Identification 》论文:点这里Guanshuo Wang, Yufeng Yuan, Jiwei Li, Shiming Ge, Xi Zhou作者单位:上海交大, 云从科技, 中科院这是云从在全国人工智能大赛2019行人重识别赛道冠军方案中所用的方法,在Market-1501上可达到90%的mAP和96.2%的Rank-1,已收录于TIP 2020。
原创
264阅读
0评论
0点赞
发布博客于 5 月前

论文笔记22 -- (Vehicle ReID)Multi-Domain Learning and Identity Mining for Vehicle Re-Identification

这是AI City Challenge 2020 Track2(Vehicle ReID)第三名的解决方案,出自罗浩团队!!!
原创
611阅读
0评论
0点赞
发布博客于 8 月前

论文笔记21 -- (细粒度识别)Destruction and Construction Learning for Fine-grained Image Recognition

《Destruction and Construction Learning for Fine-grained Image Recognition 》论文:点这里.Yue Chen1∗, Yalong Bai2∗, Wei Zhang3, Tao Mei4JD AI Research, Beijing, China有代码依然是件很关键的事情~有代码!!!: 点这里.我是在解决某个xx任务的时候接触到这个工作的,所以这篇paper还是得读一读的。这是京东AI研究院在精细图像识别FGVC Cha
原创
1646阅读
24评论
11点赞
发布博客于 8 月前

论文笔记20 --(ReID)Learning Generalisable Omni-Scale Representations for Person Re-Identification

《Learning Generalisable Omni-Scale Representations for Person Re-Identification 》论文:https://arxiv.org/abs/1910.06827Kaiyang Zhou, Xiatian Zhu, Yongxin Yang, Andrea Cavallaro, Tao Xiang(Submitted o...
原创
696阅读
5评论
1点赞
发布博客于 2 年前

论文笔记19 --(ReID)Orthogonal Center Learning with Subspace Masking for Person Re-Identification

《Orthogonal Center Learning with Subspace Masking for Person Re-Identification 》论文:https://arxiv.org/abs/1711.10295v1这是Tencent Youtu X-lab的一篇。Abstract
原创
503阅读
0评论
1点赞
发布博客于 2 年前

Ubuntu16.04挂载exfat格式U盘

sudo apt-get install exfat-fuse
原创
1638阅读
1评论
0点赞
发布博客于 2 年前

论文笔记18 --(ReID)Spatial-Temporal Person Re-identification

《Spatial-Temporal Person Re-identification》论文:https://arxiv.org/abs/1812.03282?context=csGitHub:https://github.com/Wanggcong/Spatial-Temporal-Re-identification这篇是中山大学赖剑煌老师团队发表在AAAI2018上的一篇paper。这篇...
原创
2388阅读
0评论
0点赞
发布博客于 2 年前

论文笔记17 --(ReID)SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial ...

《SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial Person Re-Identification》论文:https://arxiv.org/pdf/1810.06996.pdfGitHub:https://github.com/xfanplus/Open-SCPNet这是发表在ACCV2...
原创
1280阅读
0评论
0点赞
发布博客于 2 年前

论文笔记16 --(ReID)Batch Feature Erasing for Person Re-identification and Beyond

《Batch Feature Erasing for Person Re-identification and Beyond》论文:https://arxiv.org/abs/1811.07130GitHub:https://github.com/daizuozhuo/batch-feature-erasing-network类似mgn的切分,而且这篇是站在mgn之上看切分问题的。文章号称...
原创
575阅读
0评论
1点赞
发布博客于 2 年前

论文笔记15 --(ReID)SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identification

《SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identification》论文:https://arxiv.org/pdf/1704.08063.pdfGitHub:https://github.com/wy1iu/sphereface就是用了个新损失,softmax的变种,但有人指出跟coco loss是一...
原创
1042阅读
0评论
0点赞
发布博客于 2 年前

论文笔记14 --(ReID)Spectral Feature Transformation for Person Re-identification

《Spectral Feature Transformation for Person Re-identification》论文:https://arxiv.org/abs/1811.11405这是图森2018年11月提交到arxiv上的一篇文章。用ResNet提取2048-d feature,然后再对batch内所有image根据视觉相似性(visual similarity)建图(这里...
原创
1013阅读
0评论
0点赞
发布博客于 2 年前

论文笔记13 -- (层次聚类)Performance guarantees for hierarchical clustering

《Performance guarantees for hierarchical clustering》论文:http://cseweb.ucsd.edu/~dasgupta/papers/hier-jcss.pdfGitHub:https://github.com/jonfink/hclusterAbstract作者表示,对于任何度量空间中的任何数据集,都可以构建一个层次聚类,保证对于...
原创
269阅读
0评论
0点赞
发布博客于 2 年前

论文笔记12 -- (ResNet)Deep Residual Learning for Image Recognition

论文:《Deep Residual Learning for Image Recognition》https://arxiv.org/abs/1512.03385https://github.com/KaimingHe/deep-residual-networksAbstract更深的神经网络往往更难以训练,我们在此提出一个残差学习的框架,以减轻网络的训练负担,这是个比以往的网络要深的多...
原创
392阅读
0评论
1点赞
发布博客于 2 年前

论文笔记11 --(ReID)Deep Group-shuffling Random Walk for Person Re-identification

论文:《Deep Group-shuffling Random Walk for Person Re-identification》https://arxiv.org/abs/1807.111784. Experiments4.1. Datasets and metric4.2. Implementation details我们网络中的成对亲和力CNN采用ResNet-50 [11]网...
原创
1274阅读
3评论
2点赞
发布博客于 2 年前

论文笔记10 --(ReID)Human Semantic Parsing for Person Re-identification

论文:《Human Semantic Parsing for Person Re-identification》https://arxiv.org/pdf/1804.00216.pdfAbstract
原创
1198阅读
0评论
0点赞
发布博客于 2 年前

PyTorch源码解析--torchvision.transforms(数据预处理、数据增强)

PyTorch框架中有一个很常用的包:torchvisiontorchvision主要由3个子包构成:torchvision.datasets、torchvision.models、torchvision.transforms详细内容可参考:http://pytorch.org/docs/master/torchvision/index.htmlGitHub:https://github.c...
原创
13827阅读
7评论
4点赞
发布博客于 2 年前

论文笔记9 -- Residual Attention Network for Image Classification

论文:《Residual Attention Network for Image Classification》https://arxiv.org/abs/1704.06904https://github.com/fwang91/residual-attention-network这是CVPR2017的一篇论文,在图像分类问题上,首次成功将极深卷积神经网络与人类视觉注意力机制进行有效的结合,...
原创
3713阅读
0评论
4点赞
发布博客于 2 年前

Python--numpy和list,查询指定元素的个数及其位置

numpy查询指定元素个数:调用numpy的sum函数>>> import numpy as np>>> a = np.array([[0, 1, 2], [3, 4, 1]])>>> print aarray([[0, 1, 2], [3, 4, 1]])>>> print np.sum(a ==...
原创
12465阅读
0评论
0点赞
发布博客于 2 年前

论文笔记8 --(ReID)Camera Style Adaptation for Person Re-identification

《Camera Style Adaptation for Person Re-identification》论文:https://arxiv.org/abs/1711.10295v1Abstract作为一项跨相机检索任务,由于摄像机的不同,person re-id会收到图像风格变化的影响。在以往的方法中,网络去潜在的学习不受相机风格影响的特征,而本文提出一个camera style (Ca...
原创
2927阅读
1评论
3点赞
发布博客于 3 年前

论文笔记7 --(ReID)Video-based Person Re-identification via Self Paced Weighting

《Video-based Person Re-identification via Self Paced Weighting》,http://mmap.whu.edu.cn/wp-content/uploads/2017/11/aaai-18_wenjun_huang.pdf这是AAAI2018的一篇关于视频Person Re-ID的论文,作者从自身的步态考虑,将行人的视频序列分成多个子序列,然...
原创
1433阅读
1评论
1点赞
发布博客于 3 年前

论文笔记6 --(ReID)A Pose-Sensitive Embedding for Person Re-Id with Expanded Cross Neighborhood Re-Rank

《A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking》论文:https://arxiv.org/pdf/1711.10378.pdf这是CVPR2018的一篇论文,主要有两个贡献:将姿态信息融入到Re-ID中;设计了一个新的无监督的re-r...
原创
1224阅读
2评论
2点赞
发布博客于 3 年前

论文笔记5 --(ReID)Diversity Regularized Spatiotemporal Attention for Video-based Person Re-id

https://arxiv.org/pdf/1803.09882.pdfAbstract
原创
1634阅读
0评论
1点赞
发布博客于 3 年前

论文笔记5 --(ReID)Diversity Regularized Spatiotemporal Attention for Video-based Person Re-id

https://arxiv.org/pdf/1803.09882.pdfAbstract
原创
1634阅读
0评论
1点赞
发布博客于 3 年前

Ubuntu--切换默认Python版本

可以利用alternatives机制更改Python3为默认:终端执行命令:sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100 sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 150...
原创
2998阅读
0评论
1点赞
发布博客于 3 年前

论文笔记4 --(ReID)Re-ranking Person Re-identification with k-reciprocal Encoding

《Re-ranking Person Re-identification with k-reciprocalEncoding》论文:https://arxiv.org/abs/1701.08398v1GitHub:https://github.com/zhunzhong07/person-re-ranking这是CVPR2017的一篇paperAbstract当将person re-...
原创
9382阅读
9评论
7点赞
发布博客于 3 年前

Person Re-ID相关知识点、数据集及评估指标汇总

0. 背景人脸识别技术目前已发展的较为成熟,在很多场景与产品中都已有落地的应用,但人脸识别技术只能用到人体的人脸信息,而人体的其他重要信息得不到充分的利用,例如:衣着、姿态、行为等。另外在应用时必须要有清晰的人脸正面照片,但在很多场景下无法满足要求,例如低头、背影、模糊身形、帽子遮挡等等。行人重识别(Person Re-ID)技术正好能够弥补人脸识别的这些不足之处,行Person Re-ID能...
原创
7901阅读
4评论
11点赞
发布博客于 3 年前

Ubuntu--(资源监控)CPU+内存、GPU+显存

CPU+内存安装htop$ sudo apt-get install htop启动$ htopGPU+显存$ watch -n 1 nvidia-smi
原创
2062阅读
0评论
1点赞
发布博客于 3 年前

DarkNet(2)--修改Python调用接口,支持输入numpy图片

DarkNet源码中提供的接口,用Python处理一张图片的时候,只能传入图片路径,见python/darknet.py的demo。if __name__ == "__main__": net = load_net("cfg/tiny-yolo.cfg", "tiny-yolo.weights", 0) meta = load_meta("cfg/coco.d
原创
3048阅读
1评论
5点赞
发布博客于 3 年前

论文笔记3 --(ReID)In Defense of the Triplet Loss for Person Re-Identification

(1) 设计了新的Triplet Loss,并和其它变种进行了对比;(2) 对于是否需要pre-trained模型,进行了实验对比分析。
原创
7462阅读
6评论
9点赞
发布博客于 3 年前

论文笔记2 --(ReID) Learning Discriminative Features with Multiple Granularities for Person Re-id

本文的主要思想就是通过区域分割,来获得不同粒度的特征,比如全局和局部特征以及更细粒度的局部特征,通过一个网络的不同分支得到这些特征,每个分支都对不同的分割块进行特征提取。
原创
6075阅读
0评论
3点赞
发布博客于 3 年前

论文笔记2 --(ReID) Learning Discriminative Features with Multiple Granularities for Person Re-id

本文的主要思想就是通过区域分割,来获得不同粒度的特征,比如全局和局部特征以及更细粒度的局部特征,通过一个网络的不同分支得到这些特征,每个分支都对不同的分割块进行特征提取。
原创
6075阅读
0评论
3点赞
发布博客于 3 年前

DarkNet(1)--添加新层教程(slice层为例)

1、源码src文件夹下:新建slice_layer.c和slice_layer.hps:稍后我会放到我的GitHub上2、makefile文件中:OBJ添加slice_layer.o3、include/darknet.h文件中:(1)LAYER_TYPE添加SLICE:typedef enum { CONVOLUTIONAL, DECONVOLUTIONAL, ...
原创
1885阅读
1评论
1点赞
发布博客于 3 年前

Caffe(13)--(SSRNet模型)Keras转Caffe教程

SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimationpaper:https://github.com/shamangary/SSR-Net/blob/master/ijcai18_ssrnet_pdfa_2b.pdf1.SSRNet模型Demo(1)源码:https://github.com/shama...
原创
4149阅读
20评论
5点赞
发布博客于 3 年前

Android开发(1)--第一次玩这个

以下内容大部分是阅读《第一行代码Android》所记的笔记。1、基本认识Android系统的四大组件:活动(Activity)、服务(Service)、广播接收器(Broadcast )和内容提供器(Content Provider)AndroidManifest.xml – 整个Android项目的配置文件,程序中定义的四大组件都需要在这个文件里注册。还可以在这里给应用程序添加权限声明...
原创
754阅读
0评论
0点赞
发布博客于 3 年前

Android开发(2)--Android资源访问机制

在开发中需要引用程序资源,比如项目中assets和res目录下的图片、layout、values等或者需要系统内置的资源。资源分为两种:第一种:res目录下的资源(不会被编译,但是会生成id)第二种:assets文件夹下的资源文件,又叫原始资源文件(不会被编译,也不会生成id)1、创建Assets文件夹右键目标文件夹进行创建2、获取Assets文件夹的管理类AssetManager...
原创
809阅读
0评论
1点赞
发布博客于 3 年前

yolo测试脚本

DarkNet平台下,对训练好的yolo模型进行测试,输出各层详细的信息
py
发布资源于 3 年前

深度学习实战教程(1)--手机跑目标检测(YOLO,从DarkNet到Caffe再到NCNN完整打通)

https://github.com/lwplw这篇打算就直入主题了,YOLO是什么、DarkNet是什么、Caffe是什么、NCNN又是什么…等等这一系列的基础科普这里就完全不说了,牵扯实在太多,通过其他帖子有一定的积累后,看这篇就相对容易了。本文核心:把一个目标检测模型跑到手机上下面开工:1、训练得到一个目标检测模型目前可以做目标检测的模型有很多,比如R-CNN、Fast R-CN...
原创
40012阅读
34评论
56点赞
发布博客于 3 年前

Caffe(12)--实现YOLOv2目标检测

DarkNet转Caffe中有很多潜在的问题,在YOLOv1、v2、v3几个网络中有一些特殊的层。要在Caffe中跑YOLO,就得在Caffe中源码实现这些层。这些层的Caffe源码实现可以在网上找到很多。YOLO特殊层的Caffe框架实现YOLOv1detection层源码实现YOLOv2route层用concat层替换reorg层源码实现...
原创
9558阅读
3评论
4点赞
发布博客于 3 年前

caffe下yolov1的detection层源码实现

在caffe下实现yolov1需要添加detection层,即需要在caffe特定目录下添加该层的源码实现。 (1)detection_layer.hpp放在caffe/include/caffe/layers下; (2)detection_layer.cpp放在caffe/src/caffe/layers下; (3)修改caffe/src/caffe/proto下的caffe.proto文件
zip
发布资源于 3 年前

caffe的leaky层源码实现

在caffe下实现yolo需要添加一些特殊的层,其中yolo使用的激活函数为leaky,即需要在caffe特定目录下添加该层的源码实现。 (1)leaky_layer.hpp放在caffe/include/caffe/layers下; (2)leaky_layer.cpp放在caffe/src/caffe/layers下; (3)修改caffe/src/caffe/proto下的caffe.proto文件
zip
发布资源于 3 年前

NCNN(2)--网络结构文件.param解析

LeNet模型为例由Caffe的lenet_deploy.prototxt文件转换得到name: "LeNet"layer { name: "data" type: "Input" top: "data" input_param { shape: { dim: 1 d
原创
4717阅读
4评论
3点赞
发布博客于 3 年前

论文笔记1 --(YOLOv2)YOLO9000:Better,Faster,Stronger

论文链接:https://arxiv.org/abs/1612.08242主要包括三个部分:Better,Faster,Stronger,其中前面两部分基本上讲的是YOLO v2,最后一部分讲的是YOLO9000。Better这部分细节很多,要详细了解的话还是需要结合源码来看。本篇论文是YOLO作者为了改进原有的YOLO算法所写的。YOLO有两个缺点:(1)定位不准确(2)和基于r...
原创
20251阅读
13评论
20点赞
发布博客于 3 年前

YOLOv2--region层源码分析

YOLOv2论文中算法的其它细节见:YOLOv2–论文学习笔记(算法详解)YOLOv2损失函数的定义在darknet/src/region_layer.c文件中region_layer.c内容如下:#include "region_layer.h"#include "activations.h"#include "blas.h"#include "box.h&
原创
2874阅读
0评论
4点赞
发布博客于 3 年前

NCNN(1)--添加对新网络支持教程(LeNet为例)

ncnn框架目前自带支持以下网络:Faster R-CNNMobileNet-SSDSqueezeNetSqueezeNet-SSDYOLOv2具体实现在路径/ncnn-master/examples/1、要运行LeNet,就需要参考其它模型写一个lenet.cpp文件,内容如下:#include <stdio.h>#include <algorithm&gt...
原创
3728阅读
5评论
0点赞
发布博客于 3 年前

Ubuntu16.04安装NCCL

官方NCCL安装说明:https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html1、下载NCCLhttps://developer.nvidia.com/nccl2、安装存储库对于本地存储库sudo dpkg -i nccl-repo-<version>.deb对于网络存储库sudo d...
原创
13198阅读
1评论
4点赞
发布博客于 3 年前

Caffe(11)--YOLOv1的Detection层实现

1、yolov1论文中分为77=49个网格2、对于3类的目标检测,每个网格有classes+num(coords+confidence)=3+2*(4+1)=13个参数,其中3为类别(voc中类别为20),则一张图回归出4913=637个参数(每个cell预测1个classes,2个box(每个box包含4个坐标和1个置信度),有492=98个box,最后一个全连接层的num_output=63...
原创
1709阅读
0评论
1点赞
发布博客于 3 年前

Caffe(10)--实现YOLOv1目标检测

0、YOLOv1论文YOLOv1核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类(proposal提供位置信息。分类提供类别信息),精度高,但速度不行。YOLOv1更为直接一点,直接在输出层回归bounding box的位置和其所属类别,整张图作为网络的输入,把object detection的问题转换成一个regression问题。算法原理:1、...
原创
2974阅读
0评论
0点赞
发布博客于 3 年前

Caffe(9)--实现多label输入

方法1:把图像和label分开,各自做成lmdb,最后把label的lmdb用slice层分开 参考:https://blog.csdn.net/u013010889/article/details/53098346方法2:使用hdf5 参考:https://note.youdao.com/web/#/file/879598B7BE5D4B6AAFDE5FD48C25B834/note/W...
原创
1164阅读
0评论
1点赞
发布博客于 3 年前

深度学习实战教程(2)--Caffe下实现验证码识别

传统验证码识别:传统方法通常是先对验证码图像进行字符分割,再进行特征提取、最后通过分类器得到结果。一些验证码加入噪声或线条,字符位置不固定及粘连时,字符分割效果不好,也会影响后续字符识别。除了只包含字母和数字的验证码,国内还有一些识别汉字的验证码、计算加减乘除的验证码、图像匹配和图像分类的验证码,各种各样。深度学习验证码识别:深度学习做验证码识别是采用了多任务分类的思路。 多任务学习是针对数...
原创
2756阅读
0评论
1点赞
发布博客于 3 年前

Ubuntu16.04下搭建samba,实现linux与windows之间文件夹共享

1.安装samba:sudo apt-get install samba2.安装smbclient:sudo apt-get install smbclient3、修改配置文件sudo gedit /etc/samba/smb.conf在配置文件的最末尾加上:[share]comment = Shared Folder require password...
原创
2854阅读
0评论
0点赞
发布博客于 3 年前

Caffe(7)--神经网络模型结构可视化

1、Netscope–支持Caffe的神经网络结构在线可视化工具Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,支持从GitHub Gist或者编辑器中可视化Caffe的网络结构。网址:http://ethereon.github.io/netscope/quickstart.html使用方法: (1)打开网页http://ethereon.github.i...
原创
1904阅读
0评论
1点赞
发布博客于 3 年前

Caffe(6)--神经网络中卷积层、池化层输出特征图大小计算

在图像卷积和池化操作中有固定的kernel_size和stride,当stride > 1时,边界上会有可能发生越界的问题。Caffe中的卷积、池化后输出图像尺寸计算(1)卷积计算定义在conv_layer.cpp中的compute_output_shape()函数中 const int output_h = (height + 2 * pad_h - (dilatio...
原创
9217阅读
1评论
0点赞
发布博客于 3 年前

Caffe(5)--计算数据集的图像均值

特征标准化(使数据集中所有特征都具有零均值和单位方差)。 零均值:计算每一个维度上数据的均值(使用全体数据计算),之后在每一个维度上都减去该均值。 单位方差:在数据的每一维度上除以该维度上数据的标准差。在大多数情况下,我们并不关注所输入图像的整体明亮程度。比如在目标识别任务中,图像的整体明亮程度并不会影响图像中存在的是什么物体。更为正式地说,我们对图像块的平均亮度值不感兴趣,所以可以减去这...
原创
875阅读
0评论
0点赞
发布博客于 3 年前

Caffe(1)--环境配置教程(Ubuntu16.04+opencv3.1+Anaconda3+CUDA9.0+cuDNN7.0.5)

系统:ubuntu16.04 cuda:9.0(已安装) cudnn:7.0.5(已安装) anaconda:python3.6(已安装) opencv:3.1.0(已安装)0.安装依赖sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-...
原创
2511阅读
0评论
1点赞
发布博客于 3 年前

Caffe(4)--MobileNets实现,使用自定义数据集进行训练

论文地址:V1,https://arxiv.org/abs/1704.04861;V2,https://arxiv.org/abs/1801.04381模型实现:Caffe框架(非官方)https://github.com/shicai/MobileNet-Caffe1、下载模型 https://github.com/shicai/MobileNet-Caffe下载得到MobileNet...
原创
5195阅读
17评论
2点赞
发布博客于 3 年前

Caffe(3)--lmdb数据格式相关

caffe对于训练数据格式,支持:lmdb、h5py…… lmdb:常用于单标签数据,像分类等 h5py:用于多标签数据,对于回归等问题原因: 1、数据类型多种多样,有二进制文件、文本文件、编码后的图像文件(如JPEG、PNG、网络爬取的数据等),不可能用一套代码实现所有类型的输入数据读取,转换为统一格式可以简化数据读取层的实现; 2、使用LMDB、LEVELDB可以提高磁盘IO利用率...
原创
2878阅读
2评论
2点赞
发布博客于 3 年前

Caffe(2)--LeNet网络各层参数详解

“LeNet” 1、Data Layer 输入图像为:1*28*28,对应Channels*Height*Widthlayer { name: "mnist" type: "ImageData" top: "data" top: "label" include { phase: TRAIN }
原创
687阅读
0评论
0点赞
发布博客于 3 年前

Ubuntu16.04添加新用户并增加管理员权限

$是普通管员 #是系统管理员 在Ubuntu下,root用户默认没有密码,因此无法使用。需要用root的话,就需要给root用户设置一个密码:sudo passwd root1. 添加新用户 sudo su 进root sudo adduser xxx ,添加新用户输入密码后,出现如下信息:正在添加用户"xxx"…正在添加新组"xxx" (1003)…正在添加新...
原创
16014阅读
4评论
4点赞
发布博客于 3 年前

opencv安装脚本

这个opencv的安装脚本终于解决了ubuntu16.04下配置深度学习开发环境中,配置opencv的大难题,方便到哭啊简直
zip
发布资源于 3 年前

win10+1080Ti+双硬盘(SSD+HDD)下安装Ubuntu16.04双系统

环境: * SSD上已经装的win10 * 另一块机械硬盘上有空余的200G,用来装Ubuntu * 1080Ti显卡 * 技嘉b150m主板1.磁盘分区SSD后面划出来1G给boot准备(嫌后面事多,我就直接多给了点,反正我无所谓) 机械上的200G用来装ubuntu16.04,用Diskgenius磁盘分区软件,将磁盘分区转为主分区,再选择“删除卷”才能变为黑色的“未分...
原创
7075阅读
6评论
3点赞
发布博客于 3 年前

深度学习GPU环境安装教程:Ubuntu16.04+1080(Ti)显卡驱动+CUDA+cuDNN(已n次完美安装)

当前只装了ubuntu16.04单系统,亲测可用,之前ubuntu16.04+win10双系统下也是这种方法装的,只是需要切换视频线的接口,可参考这篇1.装好ubuntu16.04 2.主板中取消secure boot,同时取消快速启动(不清楚这个不取消,会怎么样,好像大家都取消),重启电脑 3.在终端中加入ppa源sudo add-apt-repositoy ppa:graphi...
原创
6896阅读
3评论
4点赞
发布博客于 3 年前

Ubuntu16.04--安装Anaconda

1.下载Anaconda地址:https://www.anaconda.com/download/#linux 2.安装进入安装包所在目录,执行命令:$ bash Anaconda3-5.0.1-Linux-x86_64.sh 一路回车, 到下图位置,回复yes 然后输入安装位置,根据自己需求 然后输入yes 再执行命令让.bashrc中添加的路径生
原创
34740阅读
2评论
12点赞
发布博客于 3 年前

Ubuntu16.04--安装Pycharm

1.下载Pycharm下载地址:https://www.jetbrains.com/pycharm/download/#section=linux选择Linux平台,选择下载Community社区版(免费,而且够用了),直接点DOWNLOAD开始下载 2.解压安装包将被下载到Downloads文件夹下,选择安装包右键点击提取到此处进行解压。 得到如图所示文件夹
原创
2959阅读
2评论
1点赞
发布博客于 3 年前

Mac下更换Homebrew镜像源

1.使用中科大源(1)替换默认源 第一步:替换brew.gitcd "$(brew --repo)"git remote set-url origin https://mirrors.ustc.edu.cn/brew.git第二步:替换homebrew-core.gitcd "$(brew --repo)/Library/Taps/homebrew/homebre
原创
60822阅读
3评论
17点赞
发布博客于 3 年前

欢迎使用CSDN-markdown编辑器(留存)

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗 Ctrl + B 斜体 Ctrl + I
原创
327阅读
0评论
0点赞
发布博客于 3 年前

Python--批量重命名文件

python下对图片文件进行批量重命名
原创
9571阅读
6评论
6点赞
发布博客于 4 年前

目标检测bounding box图像标注教程(使用LabelImg标注工具)

这款标注工具是图形界面,用Python和Qt写的,其标注信息可以直接转化成为XML文件,与PASCAL VOC以及ImageNet用的XML是一样的。
原创
9031阅读
0评论
2点赞
发布博客于 4 年前

(OpenCV+C++)--RGB转HSI

C++和OpenCV实现RGB转HSI
原创
1933阅读
0评论
2点赞
发布博客于 4 年前

(OpenCV+Python)--RGB转HSI

cv2.cvtColor函数封装了各种颜色空间之间的转换,唯独没有RGB与HSI之间的转换,网上查来查去也只有C++或MATLAB版本的,自己要用到python里,所以就写写python版本的。
原创
10560阅读
8评论
8点赞
发布博客于 4 年前

Windows10下配置CodeBlocks+OpenCV+MinGW

Windows10下配置CodeBlocks+OpenCV+MinGW
原创
10112阅读
3评论
9点赞
发布博客于 4 年前

Ubuntu14.04--安装PIL

Ubuntu14.04 安装PIL
原创
575阅读
0评论
1点赞
发布博客于 4 年前

Ubuntu14.04--安装protobuf 2.6.1

Ubuntu14.04下安装protobuf 2.6.1
原创
12183阅读
1评论
3点赞
发布博客于 4 年前

深度学习实战教程(3)--(TensorFlow)inception_v4模型跑Google Flower数据集

模型:slim框架下的Inception_v4模型 Inception_v4的Checkpoint:http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz 数据集:google的flower数据集http://download.tensorflow.org/example_images/flower_photos.
原创
25000阅读
38评论
7点赞
发布博客于 4 年前

Ubuntu磁盘挂载出错--Error mounting /dev/sda1 at /media/***/E: Command-line `mount -t "ntfs" -o

win10+ubuntu14.04双系统磁盘挂载出错解决办法
原创
7070阅读
0评论
2点赞
发布博客于 4 年前

TensorFlow--tf.pack改为tf.stack

TensorFlow后面版本把tf.pack改为了tf.stack
原创
7169阅读
0评论
4点赞
发布博客于 4 年前

TensorFlow安装--(方法3)Anaconda方式下查看TensorFlow版本选择性安装(Windows10 64位CPU/GPU)

其它环节与通过Anaconda环境配置方式一样,就是在安装TensorFlow时不直接使用pip install --upgrade --ignore-installed tensorflow-gpu命令,而是根据需求选择TensorFlow版本安装。
原创
14686阅读
2评论
3点赞
发布博客于 4 年前

TensorFlow版本升级--之前通过Anaconda安装(Windows)

TensorFlow版本更新
原创
14213阅读
0评论
6点赞
发布博客于 4 年前

激活函数(Activation Functions)

神经网络结构的输出为所有输入的加权和,这导致整个神经网络是一个线性模型。如果将每一个神经元的输出通过一个非线性函数,那么整个神经网络的模型也就不再是线性的了,使得神经网络可以更好地解决较为复杂的问题。这个非线性函数也就是激活函数。
原创
2452阅读
0评论
2点赞
发布博客于 4 年前

(OpenCV+Python)--目标跟踪,卡尔曼滤波+鼠标轨迹跟踪

卡尔曼是匈牙利数学家,Kalman滤波器源于其博士毕业了论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
原创
13920阅读
8评论
12点赞
发布博客于 4 年前

Python--Matplotlib数据可视化教程(散点图)

这两天数学建模中需要画个散点图,索性就把代码发上来吧,帖子嘛~当然是多多益善喽
原创
15232阅读
2评论
5点赞
发布博客于 4 年前

(OpenCV+Python)--目标跟踪,背景分割器:KNN、MOG2和GMG

OpenCV提供了一个称为BackgroundSubtractor的类,在分割前景和背景时很方便。 在OpenCV3中有三种背景分割器:K-Nearest(KNN)、Mixture of Gaussians(MOG2)、Geometric Multigid(GMG)BackgroundSubtractor类是专门用于视频分析的,即BackgroundSubtractor类会对每帧的环境进行“学习”
原创
20941阅读
6评论
15点赞
发布博客于 4 年前

(OpenCV+Python)--目标跟踪,基本的运动检测

目标跟踪是对摄像头视频中的移动目标进行定位的过程,有着非常广泛的应用。实时目标跟踪是许多计算机视觉应用的重要任务,如监控、基于感知的用户界面、增强现实、基于对象的视频压缩以及辅助驾驶等。
原创
30965阅读
13评论
6点赞
发布博客于 4 年前

Python3中raw_input() was renamed to input()

From http://docs.python.org/dev/py3k/whatsnew/3.0.html
原创
417阅读
0评论
1点赞
发布博客于 4 年前

(OpenCV+Python)--检测场景内是否有物体移动,并进行人脸抓拍

python环境下使用opencv做人脸检测和检测场景里是否有物体移动,这里只是检测出人脸和眼睛
原创
13198阅读
6评论
5点赞
发布博客于 4 年前

Windows下更改Python默认版本的方法

因为一些需求,我们可能即装了python2.7版本,又再装了Anaconda之后,安装了python3.5版本或其他,这时候就会有一个默认的版本,环境变量的python路径会使得后安装的版本优先,所以只需要把环境变量path中的两个python版本的路径改变先后顺序,就可以更改python的默认路径。
原创
11070阅读
0评论
2点赞
发布博客于 4 年前

机器学习 泰坦尼克号生还预测数据集

泰坦尼克号生还预测数据集
csv
发布资源于 4 年前

机器学习 鸢尾花数据集

鸢尾花数据集,一般用做pca
data
发布资源于 4 年前

TensorFlow学习笔记(10)--实现AlexNet

AlexNet的出现意义非常重大,它证明了CNN在复杂模型下的有效性,而且使用GPU使得训练在可接受的时间范围内得到结果
原创
12744阅读
5评论
3点赞
发布博客于 4 年前

TensorFlow学习笔记(9)--使用CNN做英文文本分类任务

文中代码是实现在TensorFlow下使用卷积神经网络(CNN)做英文文本的分类任务(本次是垃圾邮件的二分类任务),当然垃圾邮件分类是一种应用环境,模型方法也可以推广到其它应用场景,如电商商品好评差评分类、正负面新闻等。
原创
13852阅读
26评论
11点赞
发布博客于 4 年前

(OpenCV+Python)--视频流局部区域像素值处理

参考我之前写的处理图片的文章:Python+OpenCV实现【图片】局部区域像素值处理(改进版) 开发环境:Python3.6.0 + OpenCV3.2.0任务目标:摄像头采集图像(例如:480*640),并对视频流每一帧(灰度图)特定矩形区域(480*30)像素值进行行求和,得到一个480*1的数组,用这480个数据绘制条形图,即在逐帧采集视频流并处理后“实时”显示采集到的视频,并“实时”更新条
原创
14700阅读
8评论
5点赞
发布博客于 4 年前

随便聊点啥

一直习惯手写笔记,然后朋友介绍的CSDN,就开始把一些东西搬上来了,电子形式记录确实有很多好处,在写的中会去有意识的整理的更详细也更有条理一些。所以,这里大多是我学习过程中的一些记录之类的东西,方便自己随时查阅,也欢迎大家阅读交流。在记录的过程中难免会写下一些莫名的bug,有问题欢迎指出,能看到这那也是同行了,大家加油鸭。...
原创
3703阅读
3评论
2点赞
发布博客于 4 年前

Python数据可视化-Matplotlib学习笔记(2)--画图进阶

1. 一个区域画多个图2. 一个图中画两条线3. 一个图中画多条线4. 在图中添加提示标签
原创
8206阅读
0评论
2点赞
发布博客于 4 年前

Python数据可视化-Matplotlib学习笔记(1)--折线图为例画图入门

Matplotlib的官网地址:http://matplotlib.org/在使用Python做数据处理的时,大量的数据我们看起来并不是很直观,有时候把它图形化显示反而更能容易的观察数据的变化特征等等。Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。它提供了一整套和MATLAB相似的命令API,十分适合交互式地进行制图。
原创
8459阅读
0评论
3点赞
发布博客于 4 年前