对角巷

欢迎来到对角巷,为了艾泽拉斯

Person Re-ID相关知识点、数据集及评估指标总结

0. 背景 人脸识别技术目前已发展的较为成熟,在很多场景与产品中都已有落地的应用,但人脸识别技术只能用到人体的人脸信息,而人体的其他重要信息得不到充分的利用,例如:衣着、姿态、行为等。另外在应用时必须要有清晰的人脸正面照片,但在很多场景下无法满足要求,例如低头、背影、模糊身形、帽子遮挡等等。 行人...

2018-12-05 11:47:54

阅读数:275

评论数:1

深度学习实战教程(1)--手机上跑目标检测模型(YOLO,从DarkNet到Caffe再到NCNN完整打通)

这篇算是关键技术贴,YOLO是什么、DarkNet是什么、Caffe是什么、NCNN又是什么…等等这一系列科普这里就完全不说了,牵扯实在太多,通过其他帖子有一定的积累后,看这篇就相对容易了。 本文核心:把一个目标检测模型跑到手机上 整个工作分以下几个阶段: 1、训练得到一个目标检测模型 目...

2018-10-11 17:44:58

阅读数:26315

评论数:22

README

朋友介绍来的CSDN,一直习惯手写笔记,然后发现电子形式记录简直爽翻了,再也不用看着写在纸上的东西,然后内心里“我之前写的啥?”毕竟写博客会下意识的去把知识再整理一番。 一直认为我们每个人现在的样子,都是自己内心最想要的。 包括工作、感情、生活状态、知识水平… 想想过去以及现在自己做出的每一个选择...

2017-05-01 11:26:55

阅读数:2825

评论数:2

论文笔记(4)--(Re-ID)Re-ranking Person Re-identification with k-reciprocal Encoding

2017年的CVPR:《Re-ranking Person Re-identification with k-reciprocalEncoding》 论文:https://arxiv.org/abs/1701.08398v1 GitHub:https://github.com/zhunzhong0...

2018-12-06 17:39:27

阅读数:96

评论数:0

Ubuntu下CPU+内存、GPU+显存占用监控

CPU+内存 安装htop $ sudo apt-get install htop 启动 $ htop GPU+显存 $ watch -n 1 nvidia-smi

2018-12-04 11:06:30

阅读数:72

评论数:0

DarkNet(2)--修改Python调用接口,支持输入numpy图片

DarkNet源码中提供的接口,用Python处理一张图片的时候,只能传入图片路径,见python/darknet.py的demo。 if __name__ == "__main__": net = load_net(&amp...

2018-11-27 15:36:50

阅读数:133

评论数:0

论文笔记(3)--(Re-ID)In Defense of the Triplet Loss for Person Re-Identification

deep metric learning – 深度度量学习,也就是相似度学习 Classification Loss – 当目标很大时,会严重增加网络参数,而训练结束后很多参数都会被摒弃。 Verification Loss – 只能成对的判断两张图片的相似度,因此很难应用到目标聚类和检索上去。因...

2018-11-27 11:05:40

阅读数:125

评论数:0

论文笔记(2)--(Re-ID) Learning Discriminative Features with Multiple Granularities for Person Re-Id

https://github.com/lwplw/re-id_mgn 本文的主要思想就是通过区域分割,来获得不同粒度的特征,比如全局和局部特征以及更细粒度的局部特征,通过一个网络的不同分支得到这些特征,每个分支都对不同的分割块进行特征提取。 论文提出通过融合行人的全局信息以及具有辨识力的多粒度局...

2018-11-27 09:58:59

阅读数:144

评论数:1

DarkNet(1)--添加新层教程(slice层为例)

1、源码src文件夹下: 新建slice_layer.c和slice_layer.h ps:稍后我会放到我的GitHub上 2、makefile文件中: OBJ添加slice_layer.o 3、include/darknet.h文件中: (1)LAYER_TYPE添加SLICE: ...

2018-11-22 15:19:49

阅读数:85

评论数:0

Caffe(13)--(SSRNet模型)Keras转Caffe教程

SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation paper:https://github.com/shamangary/SSR-Net/blob/master/ijcai18_ssrnet_pdfa_...

2018-11-20 11:57:30

阅读数:109

评论数:0

Android开发(1)--初识(随记)

以下内容大部分是阅读《第一行代码Android》所记的笔记。 1、基本认识 Android系统的四大组件:活动(Activity)、服务(Service)、广播接收器(Broadcast )和内容提供器(Content Provider) AndroidManifest.xml – ...

2018-10-23 09:26:51

阅读数:152

评论数:0

Android开发(2)--Android资源访问机制

在开发中需要引用程序资源,比如项目中assets和res目录下的图片、layout、values等或者需要系统内置的资源。 资源分为两种: 第一种:res目录下的资源(不会被编译,但是会生成id) 第二种:assets文件夹下的资源文件,又叫原始资源文件(不会被编译,也不会生成id) 1、创建As...

2018-10-18 16:52:43

阅读数:208

评论数:0

Caffe(12)--实现YOLOv2目标检测

DarkNet转Caffe中有很多潜在的问题,在YOLOv1、v2、v3几个网络中有一些特殊的层。要在Caffe中跑YOLO,就得在Caffe中源码实现这些层。这些层的Caffe源码实现可以在网上找到很多。 YOLO特殊层的Caffe框架实现 YOLOv...

2018-10-11 14:13:24

阅读数:775

评论数:0

NCNN(2)--网络结构文件.param解析

LeNet模型为例 由Caffe的lenet_deploy.prototxt文件转换得到 name: "LeNet" layer { name: "data&q...

2018-10-09 16:06:06

阅读数:367

评论数:3

论文笔记(1)--(YOLOv2)YOLO9000:Better,Faster,Stronger

论文链接:https://arxiv.org/abs/1612.08242 主要包括三个部分:Better,Faster,Stronger,其中前面两部分基本上讲的是YOLO v2,最后一部分讲的是YOLO9000。 Better 这部分细节很多,要详细了解的话还是需要结合源码来看。 ...

2018-09-29 11:43:01

阅读数:542

评论数:3

YOLOv2--region层源码分析

YOLOv2论文中算法的其它细节见:YOLOv2–论文学习笔记(算法详解) YOLOv2损失函数的定义在darknet/src/region_layer.c文件中 region_layer.c内容如下: #include "region_layer.h&am...

2018-09-29 11:18:38

阅读数:297

评论数:0

NCNN(1)--添加对新网络支持教程(LeNet为例)

ncnn框架目前自带支持以下网络: Faster R-CNN MobileNet-SSD SqueezeNet SqueezeNet-SSD YOLOv2 具体实现在路径/ncnn-master/examples/ 1、要运行LeNet,就需要参考其它模型写一个lenet.cpp文件,内容如下:...

2018-09-25 17:42:40

阅读数:199

评论数:0

Ubuntu16.04安装NCCL

官方NCCL安装说明:https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html 1、下载NCCL https://developer.nvidia.com/nccl 2、安装存储库 对于本地存储库 sudo dp...

2018-09-20 15:57:02

阅读数:511

评论数:0

Caffe(11)--YOLOv1的Detection层实现

1、yolov1论文中分为77=49个网格 2、对于3类的目标检测,每个网格有classes+num(coords+confidence)=3+2*(4+1)=13个参数,其中3为类别(voc中类别为20),则一张图回归出4913=637个参数(每个cell预测1个classes,2个box(每...

2018-09-20 15:37:52

阅读数:174

评论数:0

Caffe(10)--实现YOLOv1目标检测

0、YOLOv1论文 YOLOv1核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类(proposal提供位置信息。分类提供类别信息),精度高,但速度不行。 YOLOv1更为直接一点,直接在输出层回归bounding box的位置和其所属类别,整张图作为...

2018-09-13 11:29:03

阅读数:244

评论数:0

提示
确定要删除当前文章?
取消 删除