给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1 -1
。
二分查找就是不断地取一个有序数组的中间值与目标数值作比较,从而不断地缩小查找范围。重难点在于边界地界定。主要分为以下两种情况:1、寻找区间中符合条件的最大值,此时就需要注意不断地压缩左边区域(通俗的说就是当中间值刚好等于条件值时,把左端点调整到中间值的位置。此时相对应的,mid就需要加一。2、寻找区间中符合条件的最小值,此时就需要注意不断地压缩右边区域,相对应的mid不用加一。一定要注意mid的取值,不然容易陷入死循环。具体在代码中体现。
#include<iostream>
#include<cstdio>
using namespace std;
#define N 10010
int p[N];
int main()
{
int n,q;
cin>>n>>q;
for(int i=0;i<n;i++)
scanf("%d",&p[i]);
while(q--)
{
int x;
scanf("%d",&x);
int l=0,r=n-1;
while(l<r)//寻找左边界
{
int mid=(l+r)/2;
if(p[mid]<x) l=mid+1;//注意,当左边界取mid+1时mid就不要+1
else r=mid;
}
if(p[l]!=x)//二分查找一定有结果,但是结果不一定正确
cout<<-1<<' '<<-1<<endl;
else{
int z=0,y=n-1;
while(z<y)//寻找右边界
{
int mid=(z+y+1)/2;
if(p[mid]>x) y=mid-1;
else z=mid;//注意,当左边界取mid时mid需要+1
}
cout<<l<<' '<<z<<endl;
}
}
return 0;
}