三国杀神吕蒙涉猎平均能上几张牌?

本文详细解析了三国杀游戏中神吕蒙的技能涉猎与攻心,并运用排列组合原理计算了涉猎技能在理想情况下的平均上牌期望,得出约为3.05张牌的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神吕蒙[点击放大]
神吕蒙
    武将技能:
    涉猎:摸牌阶段,你可以选择执行以下行动来取代摸牌:从牌堆顶亮出五张牌,拿走不同花色的牌各一张,弃掉其余的。
    攻心:出牌阶段,你可以观看一次任意一名角色的手牌,并可以展示其中一张红桃牌,然后弃掉它或将它置于牌堆顶。
 
假设神吕蒙面对的是一堆各种花色出现概率相等,且数目无限的一堆牌。
按照排列组合原理,共抓4^5 = 1024次,各种牌型出现的概率为:
 
5张A花色:4次
4张A花色,1张B花色:60次
3张A花色,2张B花色:120次
3张A花色,1张B花色,1张C花色:240次
2张A花色,2张B花色,1张C花色:360次
2张A花色,1张B花色,1张C花色,1张D花色:240次
 
故神吕蒙涉猎平均上牌期望为 (4*1 + (60 + 120)*2 + (240 + 360)*3 + 240*4)/1024 = 3124/1024
 
约为3.05张牌。

转载于:https://www.cnblogs.com/Firefox/archive/2011/09/06/2168644.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP经网络、广义回归经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
要用Python统计《三国演义》中出场人物的次数,可以按照以下步骤进行: 1. **文本预处理**:读取《三国演义》的文本文件,并进行分词处理。 2. **人物名单**:准备一个包含三国演义中主要人物姓名的列表。 3. **统计出场次数**:遍历文本,统计每个人物出现的次数。 4. **结果展示**:将统计结果按出现次数从高到低排序,并展示。 以下是一个简单的Python代码示例: ```python import jieba from collections import Counter # 读取文本文件 with open('three_kingdoms.txt', 'r', encoding='utf-8') as file: text = file.read() # 准备人物名单 characters = [ '刘备', '关羽', '张飞', '赵云', '马超', '黄忠', '诸葛亮', '曹操', '孙权', '周瑜', '吕布', '董卓', '袁绍', '孙策', '司马懿', '姜维', '魏延', '黄盖', '甘宁', '太史慈', '鲁肃', '陆逊', '庞统', '张辽', '许褚', '典韦', '夏侯惇', '夏侯渊', '张郃', '徐晃', '于禁', '乐进', '李典', '曹仁', '曹洪', '荀彧', '荀攸', '郭嘉', '贾诩', '程昱', '张昭', '周泰', '吕蒙', '黄祖', '蔡瑁', '张允', '蒋干', '马腾', '马岱', '马谡', '庞德', '华佗', '蔡文姬', '貂蝉', '孙尚香', '大乔', '小乔' ] # 分词 words = jieba.lcut(text) # 统计人物出现次数 character_counts = Counter() for word in words: if word in characters: character_counts[word] += 1 # 按出现次数排序 sorted_character_counts = character_counts.most_common() # 打印结果 for character, count in sorted_character_counts: print(f'{character}: {count}') ``` ### 说明: 1. **文本预处理**:使用`jieba`库进行中文分词。 2. **人物名单**:根据《三国演义》的主要人物名单进行统计。 3. **统计出场次数**:使用`collections.Counter`统计每个角色出现的次数。 4. **结果展示**:按出现次数从高到低排序并打印。 ### 注意事项: - 确保已安装`jieba`库:`pip install jieba` - 文本文件`three_kingdoms.txt`需要与脚本在同一目录下,且编码为UTF-8。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值