BZOJ5206: [Jsoi2017]原力
https://lydsy.com/JudgeOnline/problem.php?id=5206
分析:
- 比较厉害的三元环问题。
- 设立阈值,当点的度数大于根号时,考虑直接枚举三个点算答案。
- 否则,只需要考虑存在一个点度数小于等于根号的情况,枚举这个点,枚举它的两个出边即可,需要保证它是所选三个点中度数小于根号的编号最小的一个。
- 如果距离用\(map\)存,时间复杂度会多一个\(\log\)
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <map>
#include <cmath>
using namespace std;
#define N 50050
#define M 200050
#define mod 1000000007
typedef long long ll;
int n,m,head[N],to[M],nxt[M],val[M],opp[M],cnt,du[N],a[N],la,vis[N];
char opt[5];
map<int,ll>dis[N][3];
inline void add(int u,int v,int w,int o) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w; opp[cnt]=o;
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y,z,o,S=sqrt(n);
for(i=1;i<=m;i++) {
scanf("%d%d%d%s",&x,&y,&z,opt);
if(opt[0]=='R') o=0;
else if(opt[0]=='G') o=1;
else o=2;
dis[x][o][y]+=z;
dis[y][o][x]+=z;
add(x,y,z,o);
add(y,x,z,o);
du[x]++; du[y]++;
}
ll ans=0;
for(i=1;i<=n;i++) {
if(du[i]>S) a[++la]=i;
}
int j,k;
for(i=1;i<=la;i++) {
x=a[i];
for(j=1;j<=la;j++) if(dis[x][0][a[j]]) {
y=a[j]; ll t1=dis[x][0][y];
for(k=1;k<=la;k++) if(dis[y][1][a[k]]) {
z=a[k];
ans=(ans+t1*dis[y][1][z]%mod*dis[z][2][x])%mod;
}
}
}
for(x=1;x<=n;x++) if(du[x]<=S) {
vis[x]=1;
for(i=head[x];i;i=nxt[i]) if(!vis[to[i]]) {
ll t=val[i];
for(j=nxt[i];j;j=nxt[j]) if(!vis[to[j]]&&opp[i]!=opp[j]&&to[i]!=to[j]) {
ans=(ans+t*val[j]%mod*dis[to[i]][3-opp[i]-opp[j]][to[j]])%mod;
}
}
}
printf("%lld\n",ans);
}