题意
一个原力网络可以看成是一个可能存在重边但没有自环的无向图。每条边有一种属性和一个权值。属性可能是R、G、B三种当中的一种,代表这条边上原力的类型。权值是一个正整数,代表这条边上的原力强度。原力技术的核心在于将R、G、B三种不同的原力融合在一起产生单一的、便于利用的原力。为了评估一个能源网络,JYY需要找到所有满足要求的三元环(首尾相接的三条边),其中R、G、B三种边各一条。一个三元环产生的能量是其中三条边的权值之积。现在对于给出的原力网络,JYY想知道这个网络的总能量是多少。网络的总能量是所有满足要求三元环的能量之和。
N≤50,000,M≤100,000,1≤Wi≤10^6
分析
考虑根号分治,把度数大于
m−−√
m
的点称为大点,反之称为小点。
对于一个三元环,若其全是大点,则用三重循环枚举三个大点,复杂度是
O((m−−√)3)=O(mm−−√)
O
(
(
m
)
3
)
=
O
(
m
m
)
。
若存在小点,则枚举编号最小的小点,然后枚举该小点的两条出边,判断是否合法。把第一次枚举看做枚举所有边,第二次枚举的边数不超过
O(m−−√)
O
(
m
)
,所以复杂度也是
O(mm−−√)
O
(
m
m
)
。
那如何判断一条边是否存在呢?可以用map或用hash,用map的话复杂度会多一个log,反正我是偷懒用了map。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
typedef long long LL;
const int N=50005;
const int MOD=1000000007;
int n,m,cnt,last[N],deg[N],B,a[N];
struct edge{int to,next,w,op;}e[N*4];
std::map<LL,int> ma;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void addedge(int u,int v,int w,int op)
{
e[++cnt].to=v;e[cnt].w=w;e[cnt].op=op;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].w=w;e[cnt].op=op;e[cnt].next=last[v];last[v]=cnt;
}
LL point(int x,int y,int z)
{
if (x>y) std::swap(x,y);
return (LL)(x-1)*n+(LL)y+(LL)(z-1)*n*n;
}
int main()
{
n=read();m=read();B=sqrt(m);
for (int i=1;i<=m;i++)
{
int x=read(),y=read(),w=read(),op;
char ch[2];scanf("%s",ch);
if (ch[0]=='R') op=1;
else if (ch[0]=='G') op=2;
else op=3;
(ma[point(x,y,op)]+=w)%=MOD;
addedge(x,y,w,op);
deg[x]++;deg[y]++;
}
int tot=0,ans=0;
for (int i=1;i<=n;i++) if (deg[i]>B) a[++tot]=i;
for (int i=1;i<=tot;i++)
for (int j=1;j<=tot;j++)
for (int k=1;k<=tot;k++)
{
ans+=(LL)ma[point(a[i],a[j],1)]*ma[point(a[i],a[k],2)]%MOD*ma[point(a[j],a[k],3)]%MOD;
ans-=ans>=MOD?MOD:0;
}
int ano[4][4];
ano[1][2]=ano[2][1]=3;
ano[1][3]=ano[3][1]=2;
ano[2][3]=ano[3][2]=1;
for (int i=1;i<=n;i++)
{
if (deg[i]>B) continue;
for (int j=last[i];j;j=e[j].next)
{
if (e[j].to<i&°[e[j].to]<=B) continue;
for (int k=last[i];k;k=e[k].next)
{
if (j==k) break;
if (e[k].to<i&°[e[k].to]<=B||e[k].op==e[j].op||e[j].to==e[k].to) continue;
ans+=(LL)e[k].w*e[j].w%MOD*ma[point(e[j].to,e[k].to,ano[e[j].op][e[k].op])]%MOD;
ans-=ans>=MOD?MOD:0;
}
}
}
printf("%d",ans);
return 0;
}