基于dijkstra算法求地铁站最短路径以及打印出所有的路径

拓展dijkstra算法,实现利用vector存储多条路径:

#include <iostream>
#include <vector>
#include <stack>
using namespace std;
  
const int maxnum = 100;
const int maxint = 999999;
  
// 各数组都从下标1开始
int dist[maxnum];     // 表示当前点到源点的最短路径长度
 
int c[maxnum][maxnum];   // 记录图的两点间路径长度
int n, line;             // 图的结点数和路径数
  
// n -- n nodes
// v -- the source node
// dist[] -- the distance from the ith node to the source node
// prev[] -- the previous node of the ith node
// c[][] -- every two nodes' distance
void Dijkstra(int n, int v, int *dist, vector<int> *prev, int c[maxnum][maxnum])
{
    bool s[maxnum];    // 判断是否已存入该点到S集合中
    for(int i=1; i<=n; ++i)
    {
        dist[i] = c[v][i];
        s[i] = 0;     // 初始都未用过该点
        if(dist[i] < maxint)
            prev[i].push_back(v);
    }
    dist[v] = 0;
    s[v] = 1;
  
    // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
    // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
         // 注意是从第二个节点开始,第一个为源点
    for(int i=2; i<=n; ++i)
    {
        int tmp = maxint;
        int u = v;
        // 找出当前未使用的点j的dist[j]最小值
        for(int j=1; j<=n; ++j)
            if((!s[j]) && dist[j]<tmp)
            {
                u = j;              // u保存当前邻接点中距离最小的点的号码
                tmp = dist[j];
            }
        s[u] = 1;    // 表示u点已存入S集合中
  
        // 更新dist
        for(int j=1; j<=n; ++j)
            if((!s[j]) && c[u][j]<maxint)
            {
                int newdist = dist[u] + c[u][j];
                if(newdist <= dist[j])
                {
                    if (newdist < dist[j]) {
                      prev[j].clear();
                      dist[j] = newdist;
                    }
                    prev[j].push_back(u);
                }
            }
    }
}
  
// 查找从源点v到终点u的路径,并输出
void searchPath(vector<int> *prev, int v, int u, int sta[], int len) {
    if (u == v) {
        cout<<v;
        return ;
    }
    sta[len] = u;
    for (int i = 0 ; i < prev[u].size(); ++i ) {
        if (i > 0) {
            for (int j = len - 1  ; j >= 0 ; --j) {
                cout << " -> " << sta[j];
            }
            cout<<endl;
        }
        searchPath(prev, v, prev[u][i], sta, len + 1);
        cout << " -> " << u;
    }
}
  
int main() {
    //freopen("input.txt", "r", stdin);
    // 各数组都从下标1开始
    vector<int> prev[maxnum];     // 记录当前点的前一个结点
    // 输入结点数
    cin >> n;
    // 输入路径数
    cin >> line;
    int p, q, len;          // 输入p, q两点及其路径长度
     for(int i=1; i<=n; ++i)
        for(int j=1; j<=n; ++j)
            c[i][j] = maxint;
  
    for(int i=1; i<=line; ++i)  
    {
        cin >> p >> q >> len;
        if(len < c[p][q])       // 有重边
        {
            c[p][q] = len;      // p指向q
            c[q][p] = len;      // q指向p,这样表示无向图
        }
    }
  
    for(int i=1; i<=n; ++i)
        dist[i] = maxint;
    for(int i=1; i<=n; ++i)
    {
        for(int j=1; j<=n; ++j)
            printf("%8d", c[i][j]);
        printf("\n");
    }
  
    Dijkstra(n, 1, dist, prev, c);
  
    cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
     cout << "源点到最后一个顶点的路径为: "<<endl;
    int sta[maxnum];
    searchPath(prev, 1, n, sta, 0);
}
 
/*
 
5 8
1 2 10
1 4 20
1 5 100
2 3 10
3 5 10
4 3 10
4 5 10
2 5 20
  999999      10  999999      20     100
      10  999999      10  999999      20
  999999      10  999999      10      10
      20  999999      10  999999      10
     100      20      10      10  999999
源点到最后一个顶点的最短路径长度: 30
源点到最后一个顶点的路径为:
1 -> 2 -> 5
1 -> 2 -> 3 -> 5
1 -> 4 -> 5请按任意键继续. . .
*/

注:(1)每次使用Dijkstra算法计算都会将prev中函数进行修改,因此需要将其进行CLEAR;

(2)目前的代码给出来将路径打印出来,但是还需要将其进行存储。后续更新。

转载于:https://www.cnblogs.com/usec/p/7403656.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值