Dijkstra算法——求最短路径

算法概要:
对于图G=(V,E)
X={1},Y=V-{1}
对于每个v ∈ \in Y,如果存在从点1到v的边,则令 λ \lambda λ[v]为边的长度;否则令 λ \lambda λ[v]为 ∞ \infin ,并设 λ \lambda λ[1]为0
while Y ≠ \neq ̸={}
     令y ∈ \in Y,使得 λ \lambda λ[y]最小
      将y从Y移到X
     更新那些在Y中与y相邻的顶点的标记
end while
伪代码:
输入:含权有向图G=(V,E),V={1,2,…n}
输出:G中顶点1到其他顶点的最短距离
X={1};Y ← \leftarrow V - {1}; λ \lambda λ[1] ← \leftarrow 0
for y ← \leftarrow 2 to n
    if y 相邻于1 then λ \lambda λ[y] ← \leftarrow length[1,y]
   else λ \lambda λ[y] ← \leftarrow ∞ \infin
   end if
  end for**
for j ← \leftarrow 1 to n-1
    令y ∈ \in Y,使得 λ \lambda λ[y]最小
    X ← \leftarrow X ⋃ \bigcup {y}
    Y ← \leftarrow Y-{y}
    for 每条边(y,w)
        if w ∈ \in Y and λ \lambda λ[y] +length[y,w] < λ \lambda λ[w]   then
        λ \lambda λ[w] ← \leftarrow λ \lambda λ[y] +length[y,w]
        end for
end for

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值