- 博客(21)
- 资源 (2)
- 收藏
- 关注
原创 编程基础----Python高阶函数的应用
编程基础----Python高阶函数的应用Lambda表达式(匿名函数)map函数的应用filter 过滤器reduce函数python中的三大推导式列表推导式集合推导式字典推导式闭包Lambda表达式(匿名函数)格式 :lambda 参数列表:函数体def add(x,y): return x+y使用lambda表达式进行改写后:add_lambda=lambda x,y:x+ymap函数的应用list=[1,2,3,4,5]r=map(lambda x:x+x,list1)pr
2021-02-13 21:29:39 177 1
原创 自然语言处理---Two Main Branches of Learning
自然语言处理---Two Main Branches of Learning根据数据量选择系统专家系统(Expert System)Expert System's FlowProperties of Expert SystemLogical InferenceForward Chaining AlgorithmBackward Chaining AlgorithmDrawbacks of Expert System基于概率的系统(Probabilistic)根据数据量选择系统数据量很小/没有数据—>
2021-02-05 12:49:37 204
原创 算法基础---Dynamic Programming
算法基础---Dynamic ProgrammingDynamic Programming最大子序和最长上升子序列零钱兑换0-1 背包问题Dynamic Programming最大子序和最长上升子序列零钱兑换0-1 背包问题
2021-01-27 17:36:25 185
原创 自然语言处理---Language Model
自然语言处理---Language ModelNoisy Channel Model举例说明Language ModelChain RuleMarkov AssumptionMarkov Assumption ExampleNoisy Channel Model举例说明Language Model语言模型:用来判断一句话从语法上是否通顺Chain RuleMarkov AssumptionMarkov Assumption Example...
2021-01-27 12:51:58 171
原创 自然语言处理---文本处理的流程
自然语言处理---文本处理的流程文本处理的流程Word SegmentationWord Segmentation toolsSegmentation Method 1:Max Matching(最大匹配)前向最大匹配(forward-max matching )后向最大匹配(backward-max matching )最大匹配的缺点Segmentation Method 2:Incorporate Semantic(考虑语义)考虑语义的缺点Segmentation Method 3:维特比算法Word
2021-01-21 12:08:37 765
原创 算法基础---算法复杂度
算法基础---算法复杂度复杂度介绍时间复杂度空间复杂度举例说明归并排序Fibonanic number复杂度介绍时间复杂度运行一个算法,消耗的时间空间复杂度运行一个算法,消耗的内存举例说明归并排序Fibonanic number时间复杂度:2^n空间复杂度:O(n)求f(8)的时候,最多使用8个内存空间。代码改进(使用数组存储):时间复杂度:O(n)空间复杂度:O(1)...
2021-01-19 19:11:34 148
原创 自然语言处理——基本概念
自然语言处理——基本概念NLP基本概念what is NLP?why NLP is harder?机器翻译language ModelNLP的应用场景NLP的关键技术自然语言处理技术四个维度NLP基本概念what is NLP?NLP=NLU+NLGNLU:语音/文本——>意思(meaning)NLG:意思——>语音/文本why NLP is harder?Multiple Ways to expressAmbiguity:learning from data机器翻译l
2021-01-18 18:49:39 224 2
原创 机器学习——算法进阶(回归)
机器学习——算法进阶(回归)线性回归最大似然估计MLE最小二乘法的本质Logistic回归分类问题的首选算法多分类:Softmax回归目标函数技术点梯度下降算法最大似然估计特征选择线性回归目标值数据为连续型:回归目标值数据为离散型:分类最大似然估计MLE最小二乘法的本质Logistic回归分类问题的首选算法多分类:Softmax回归目标函数技术点梯度下降算法最大似然估计特征选择...
2021-01-18 13:50:34 126
原创 Deep learning ——(Gradient Descent)
Deep learning ——(Gradient Descent)Gradient DescentreviewTip 1: Tuning your learning ratesAdaptive Learning RatesAdagradTip 2: Stochastic Gradient DescentTip 3: Feature ScalingMore Limitation of Gradient DescentGradient DescentreviewTip 1: Tuning your
2021-01-17 17:55:19 113
原创 Deep learning——Regression
Deep learning ——Regression)RegressionExample ApplicationStep 1: ModelStep 2: Goodness of FunctionStep 3: Best FunctionStep 4: Gradient DescentHow’s the results?Model SelectionBack to step 1:Redesign the ModelBack to step 1:Redesign the Model AgainBack to s
2021-01-16 22:11:48 341
原创 机器学习——算法基础(逻辑回归分析,K-means)
机器学习——算法基础(逻辑回归分析,K-means)分类算法-逻辑回归什么是逻辑回归逻辑回归的损失函数、优化sklearn逻辑回归APILogisticRegression总结K-meansk-means步骤k-means APIk-means 性能评估Kmeans性能评估指标APIKmeans总结分类算法-逻辑回归什么是逻辑回归逻辑回归:线性回归的式子作为输入 ,解决二分类问题。输入:ℎ(????)= ????_0+〖????_1 ????〗_1+????_2 ????_2+…= ????^??
2021-01-14 18:18:29 371
原创 机器学习——算法基础(线性回归分析)
机器学习——算法基础(线性回归分析,逻辑回归,Kmeans)回归算法-线性回归分析什么是线性回归线性模型线性回归损失函数(误差大小)最小二乘法之梯度下降sklearn线性回归正规方程、梯度下降API分类算法-逻辑回归聚类算法-kmeans回归算法-线性回归分析什么是线性回归线性模型线性回归线性回归:寻找一种能预测的趋势定义:线性回归通过一个或者多个自变量与因变量之间之间进行建模的回归分析。其中特点为一个或多个称为回归系数的模型参数的线性组合一元线性回归:涉及到的变量只有一个多元线性回归:涉
2021-01-13 21:23:14 216
原创 机器学习——算法基础(决策树,随机森林)
机器学习——算法基础(决策树,随机森林)分类算法-决策树认识决策树信息熵决策树的划分依据之一-信息增益信息增益的计算常见决策树使用的算法sklearn决策树API决策树的结构、本地保存决策树的优缺点以及改进集成学习方法-随机森林什么是集成学习什么是随机森林随机森林建立多个决策树的过程集成学习API随机森林的优点分类算法-决策树认识决策树决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法信息熵“谁是世界杯冠军”的信息量应
2021-01-10 22:15:42 378
原创 机器学习——算法基础(KNN,朴素贝叶斯)
机器学习——算法基础(KNN,朴素贝叶斯)转换器与估计器转换器估计器sklearn机器学习算法的实现-估计器估计器的工作流程分类算法-k近邻算法(KNN)什么是k近邻算法(KNN)sklearn k-近邻算法APIKaggle案例数据来源数据处理代码与结果k-近邻算法优缺点分类算法-朴素贝叶斯朴素贝叶斯-贝叶斯公式sklearn朴素贝叶斯实现API朴素贝叶斯案例流程代码与结果朴素贝叶斯分类优缺点分类模型的评估混淆矩阵精确率(Precision)与召回率(Recall)其他分类标准分类模型评估API模型的选择
2021-01-09 18:52:29 1076
原创 机器学习——算法基础2
机器学习——算法基础2数据降维特征选择特征选择的原因特征选择是什么特征选择的方法sklearn特征选择API主成分分析(PCA)PCA是什么sklearn主成分分析APIkaggle降维案例数据来源代码与结果机器学习算法和分类监督学习非监督学习分类问题什么是分类问题分类问题的应用回归问题什么是回归问题回归问题的应用数据降维这里的降维指的是减少特征的数量。特征选择特征选择的原因冗余:部分特征的相关度高,容易消耗计算性能噪声:部分特征对预测结果有负影响特征选择是什么特征选择就是单纯地从提取到的所
2021-01-08 22:31:22 110
原创 机器学习——算法基础1
机器学习——算法基础机器学习的简介什么是机器学习机器学习应用场景数据集机器学习的数据可用的数据集常用数据集的结构组成特征工程特征工程是什么特征工程的意义Scikit-learn库介绍特征抽取字典特征抽取文本特征抽取中文使用jieba分词TF-IDF特征的预处理特征处理是什么sklearn特征处理API归一化sklearn归一化API归一化的总结标准化与归一化对比sklearn特征化API标准化的总结缺失值机器学习的简介什么是机器学习机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预
2021-01-07 21:10:05 115
原创 机器学习——数学基础(矩阵与线性代数)
机器学习——数学基础(矩阵与线性代数)矩阵矩阵的基本知识矩阵的分解(SVD的分解)伴随矩阵方阵的逆矩阵的乘法概率转移矩阵矩阵和向量组矩阵和向量的乘法矩阵的秩秩与线性方程组解的关系向量组等价系数矩阵正交阵特征值和特征向量正定阵矩阵求导矩阵矩阵的基本知识矩阵的分解(SVD的分解)伴随矩阵方阵的逆矩阵的乘法概率转移矩阵平稳分布:矩阵和向量组矩阵和向量的乘法矩阵的秩秩与线性方程组解的关系推论:向量组等价系数矩阵正交阵特征值和特征向量特征值的性质:
2021-01-06 21:18:27 457
原创 机器学习——数学基础
机器学习——数学基础什么是机器学习机器学习可以解决什么机器学习的方法什么是机器学习机器学习可以解决什么给定数据的预测问题1,数据清洗/特征选择2,确定算法模型/参数优化3,结果预测步骤一:训练数据—>特征提取—>选择机器学习算法—>建好模型步骤二:测试数据—>特征提取—>模型—>预测结果机器学习的方法...
2020-12-20 19:59:52 178 1
原创 数据科学库——matplotlib
数据科学库——matplotlibmatplotlib为什么学习matplotlib基础绘图绘制散点图绘制条形图绘制直方图matplotlib使用流程matplotlib更多图形样式matplotlib为什么学习matplotlib能将数据进行可视化,更直观的呈现使数据更加客观,具有说服力基础绘图axis指的就是x轴或者y轴from matplotlib import pyplot as plt##从2开始 到26截止(不包含26),步长为2## range(start,stop,step
2020-11-30 22:14:14 246 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人