基于腾讯云自然语言处理 NLP服务实现文本情感分析

本文介绍了如何使用Python调用腾讯云NLP服务SDK进行情感分析,包括开通服务、创建秘钥、安装所需工具、部署NLP服务,并通过实例展示了如何对文本进行情感分析。作者还探讨了该服务在企业中的广泛应用,特别是降本增效方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、前言

最近有一个需求,就是分析各种评论内容,之后分析出来特定场景下其评论是否有效,比如我们CSDN最常见的互三,这些互三如何判断,是否很多人发的评论都是类似重复的,今天我们来使用腾讯云的 NPL 服务来做一个语义分析的实践。

本文是基于腾讯云产品:NLP 服务的技术实践,如果你需要更多了该服务,请点击官方链接:点击这里

在这里插入图片描述

二、NLP 服务简介

NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。

上面介绍了 NPL 服务是什么以及主要的用途,下面介绍一下我们今天使用的腾讯云的 NLP 服务

腾讯云 NLP 服务综合了腾讯内部 NLP 技术,提供全面的智能文本处理和生成功能,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。这些功能适用于各行业,能够帮助用户更好理解文本、提高搜索和推荐准确性、评估词语相似度、快速发现文本中的重复或相似句子、优化文本表达、识别并纠正语法、拼写等错误,同时通过自动文本补全和关键句子生成提高创作效率。

三、Python 调用腾讯云 NLP 服务 SDK 构建情感分析处理

3.1 开通腾讯云 NLP 服务

这里我们直接访问限时福利 50000 次免费额度链接进行开通:官方链接点击这里

勾选协议后,点击立即开通按钮。
在这里插入图片描述

可以看到基础版是 50000 次免费,高级版是 1000 次免费。

在这里插入图片描述

3.2 创建的腾讯云持久证书(如果已创建请跳过)

登录腾讯云控制台 点击查看持久证书

链接:https://console.cloud.tencent.com/cam/capi

在提示的各种警告,直接点击蓝色按钮
在这里插入图片描述

同样点击确定按钮。

在这里插入图片描述

在 API 秘钥管理页面,点击新建秘钥按钮,之后勾选知晓警告后,点击确定按钮,进行创建秘钥。

在这里插入图片描述

3.2 在腾讯云服务器中安装 Git 工具以及 Python 环境

购买服务器过程自行略过,不是本文重点。

直接运行如下命令进行安装 Git 以及 Python。

yum install -y git python-pip

在这里插入图片描述

等待安装进度,之后出现 Completed 表示安装成功。

接着我们安装 Python 的 requests 依赖包

pip install requests
或者
pip3 install requests

这里直接使用的 pip3 进行安装的如下图所示
在这里插入图片描述

3.3 安装 qcloudapi-sdk-python

直接使用下面的命令进行克隆 qcloudapi-sdk-python

cd /data/nlp/
git clone https://github.com/QcloudApi/qcloudapi-sdk-python

执行过程如下:

[root@VM-8-7-centos ~]# cd /data/nlp/
[root@VM-8-7-centos nlp]#
[root@VM-8-7-centos nlp]# git clone https://github.com/QcloudApi/qcloudapi-sdk-python
Cloning into 'qcloudapi-sdk-python'...
remote: Enumerating objects: 813, done.
remote: Total 813 (delta 0), reused 0 (delta 0), pack-reused 813
Receiving objects: 100% (813/813), 122.81 KiB | 0 bytes/s, done.
Resolving deltas: 100% (476/476), done.
[root@VM-8-7-centos nlp]# ll
total 4
drwxr-xr-x 5 root root 4096 Jan 31 21:51 qcloudapi-sdk-python

在这里插入图片描述

3.4 部署腾讯云的自然语言处理 NLP 服务

在 /data/nlp/qcloudapi-sdk-python 下创建 wenzhi.py 文件,代码内容如下,将 SecretId 和 SecretKey 字段修改为 3.2 所创建的对应取值

Python 代码如下:

#!/usr/bin/python
# -*- coding: utf-8 -*-

from QcloudApi.qcloudapi import QcloudApi

module = 'wenzhi'

'''
action 对应接口的接口名,请参考wiki文档上对应接口的接口名
'''
action = 'TextSentiment'

config = {
    'secretId': '之前取得的 secretId',
    'secretKey': '之前取得的 secretKey',
    'Region': 'gz',
    'method': 'POST'
}

'''
params 请求参数,请参考wiki文档上对应接口的说明
'''
params = {"content": "大A股挺住啊,加油!不能再跌了!"}

try:
    service = QcloudApi(module, config)

    # 生成请求的URL,不发起请求
    print service.generateUrl(action, params)
    # 调用接口,发起请求
    print service.call(action, params)
except Exception, e:
    print 'exception:', e

上述的代码调用的相关参照如下:

在这里插入图片描述

执行以下命令,就可以得到对 “大A股挺住啊,加油!不能再跌了!” 这句话的情感分析结果。

cd /data/qcloudapi-sdk-python
python wenzhi.py

得到类似如下的结果, 证明调用成功。

{"code":0,"message":"","codeDesc":"Success","positive":0.99481022357941,"negative":0.0051898001693189}

上面的各字段的含义如下:

positive    正面情感概率
negative    负面情感概率
code        0表示成功,非0表示失败
message     失败时候的错误信息,成功则无该字段

如果你想要更多相关接口和文档, 请访问 NLP服务 获取更多信息。

四、文末个人总结

和很多服务类似腾讯云的 NLP 服务同样有自己的 API 调用,并且部署调试过程也比较简单,如果有类似的需求,你可以直接参看上述的实例中进行操作。

以自身的经历及经验来讲,实际上腾讯云的 NLP服务可以在多个领域进行应用,比如:银行、保险、证券、政务等领域,经常有大量的文档需要投入人力进行整理、提炼和归档,可以使用腾讯云 NLP 的关键词提取和文本分类接口,快捷、高效地完成结构化抽取,有效辅助人工,降低人力参与成本。这无疑是非常符合当代企业的降本增效主题。希望本篇文章对你有所帮助。

### 如何调用腾讯云 NLP 情感分析 API 为了成功调用腾讯云情感分析API,需遵循特定的请求结构和参数设置。下面提供了详细的说明以及Python代码示例来展示如何实现这一点。 #### 请求方法与URL - **HTTP Method**: POST - **Request URL**: `https://nlp.tencentcloudapi.com/?Action=SentimentAnalysis`[^2] 此接口用于对给定的一段文本进行情感倾向性判断,返回正面、负面或中立的结果及其置信度分数。 #### 参数列表 | 名称 | 类型 | 是否必填 | 描述 | |-------------|--------|------|------------------------------------------------------------| | Action | String | 是 | 接口名称,本接口取值:SentimentAnalysis | | Region | String | 否 | 地域信息,默认为广州 | | Text | String | 是 | 需要检测的文本 | 除了上述公共参数外,还需要传递必要的认证信息(如SecretId, SecretKey),这部分通常由SDK自动处理。 #### Python SDK安装 首先确保已安装腾讯云Python SDK: ```bash pip install --upgrade tencentcloud-sdk-python ``` #### 调用示例代码 以下是使用Python调用该API的具体例子: ```python from tencentcloud.common import credential from tencentcloud.common.profile.http_profile import HttpProfile from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.nlp.v20190408 import nlp_client, models def analyze_sentiment(text): try: cred = credential.Credential("your-secret-id", "your-secret-key") # 替换成自己的密钥 http_profile = HttpProfile() http_profile.req_method = "POST" http_profile.req_timeout = 30 http_profile.endpoint = "nlp.tencentcloudapi.com" client_profile = ClientProfile() client_profile.http_profile = http_profile client = nlp_client.NlpClient(cred, "", client_profile) req = models.SentimentAnalysisRequest() params = '{"Text": "%s"}' % text req.from_json_string(params) resp = client.SentimentAnalysis(req) print(resp.to_json_string()) except Exception as e: print(e) if __name__ == "__main__": sample_text = "这家餐厅的服务非常好,食物也很美味。" # 测试文本 analyze_sentiment(sample_text) ``` 这段脚本展示了如何创建一个简单的函数`analyze_sentiment()`,接受一段中文字符串作为输入并打印出其情感分析结果。注意,在实际应用前应将`your-secret-id`和`your-secret-key`替换为你自己的凭证信息。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bluetata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值