无向图的割点与割边

定义:

  给定无向图G=(V,E):

  若对于x∈V,从图中删去节点x以及所有与节点x相关联的边后,G分裂成两个或两个以上不相连的子图,则称x为G的割点

  若对于e∈E,从图中删去边e后,G分裂成两个不相连的子图,则称e为G的或者割边。

求法:

  根据著名的计算机学家Robert Tarjan(对,就是那个LCA算法的Tarjan)的名字命名的Tarjan算法能够在线性的时间内求出无向图的割点与桥。

  Tarjan算法基于无向图的深度优先遍历。

时间戳:

  在图的深度优先遍历的过程中,按照每一个节点第一次被访问的时间顺序,给予N个节点1~N的整数标记,该标记就被称为“时间戳”记为dfn[x]。

搜索树:

  在无向图中任选一个节点出发进行深度优先遍历,每个点只访问一次。所有发生递归的边(x,y)构成一棵树(就是深度优先遍历中用vis[x]数组标记,防止重复走的边以外的边),我们把它称为“无向连通图的搜索树”,当然一般无向图(不一定连通)的各个连通块的搜索树构成无向图的“搜索森林”。

追溯值:

  除了时间戳之外,Tarjan算法还引入了一个“追溯值”low[x]。设subtree(x)表示搜索树中以x为根的子树。low[x]定义为以下两种节点的时间戳最小值:

  1. subtree(x)中的节点。
  2. 通过一条不在搜索树上的边,能够到达subtree(x)中的节点(就是与搜索树中以x为根的子树以不在搜索树上的边相连的节点)。

  为了计算low[x],我们先初始化为low[x]=dfn[x](按道理根节点的时间戳比以它为根的子树中的节点的时间戳都小),然后考虑从x出发的所有边(x,y):

  1. 若在搜索树上x是y的父节点,则另low[x]=min(low[x],low[y])。
  2. 若无向边不在搜索树上,则另low[x]=min(low[x],dfn[y])。

割边判定法则:

  无向边(x,y)是割边,当且仅当搜索树上存在x的一个子节点y,满足:
                    dfn[x]<low[y]

充分性:  

  根据定义,dfn[x]<low[y]说明从subtree(y)出发,在不经过边(x,y)的前提下,不管走那条边都无法到达x或者比x更早访问的节点(若能到达,则追溯值应该>=dfn[x]),换句话说,将边(x,y)删除之后,subtree(y)与x无边相连,与比x更早访问的节点无边相连,图就被裂成了两部分,所以(x,y)是割边。

必要性:

  若对于x的任意子节点,都有dfn[x]>=low[y],则说明每一个subtree(y)都能绕行其他边到达x或比x更早访问的节点,那么(x,y)就自然不是割边。

  还有,割边一定是搜索树中的边,并且一个简单环中的边一定都不是割边。

  特别需要注意,因为我们遍历的是无向图,所以从每一个点x出发,总能访问到它的父节点fa。根据low的计算方法(x,fa)属于搜索树上的边,且fa不是x的子节点,故不能用fa的时间戳来更新low[x]。
  但是如果仅记录每一个节点的父节点,会无法处理重边的情况——当x与fa之间有多条边时,(x,fa)的任意一条边均不是割边。在这些重复的边中,只有一条算是“搜索树上的边”,其他的几条均不算。故有重边时,dfn[fa]能用来更新low[x]。
  一个好的解决方法是:改为记录“递归进入每个节点的边的编号”(这样就能防止通过搜索树上的边访问fa又能处理重边了)。我们用邻接表“成对变换”的储存技巧来实现这一点。

附上代码:

 1 #include<bits/stdc++.h>
 2 using namespace<
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值