施托尔茨定理

定理描述:

  若

  1. $y_{n+1}>y_n   (n=1,2,\cdots)$
  2. $\lim\limits_{n\rightarrow\infty}y_n=+\infty$
  3. $\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$存在

则 $\lim\limits_{n\rightarrow\infty}\frac{x_n}{y_n}=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$

证:假定$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=a$由此,并注意到$y_n\rightarrow +\infty$,可知,对于任给的$\varepsilon >0$,存在正整数N,使当n>N时恒有

  $\mid \frac{x_{n+1}-x_n}{y_{n+1}-y_n}-a\mid <\frac{\varepsilon}{2} (且y_n>0)$

于是,分数(当n>N时)

  $\frac{x_{N+2}-x_{N+1}}{y_{N+2}-y_{N+1}},\frac{x_{N+3}-x_{N+2}}{y_{N+3}-y_{N+2}}\cdots ,\frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}},\frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}$

都包含在$(a-\frac{\varepsilon}{2},a+\frac{\varepsilon}{2})$之间(由极限的定义可直接得出),因为$y_{n+1}>y_n$,所以这些分数的分母都是正数,于是,得

  $(a-\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})<x_{N+2}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})$,
  $(a-\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})<x_{N+3}-x_{N+2}<(a+\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})$,
                     $\vdots$
  $(a-\frac{\varepsilon}{2})(y_{n+1}-y_{n})<x_{n+1}-x_{n}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{n})$,

相加之,得

  $(a-\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})<x_{n+1}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})$

即$a-\frac{\varepsilon}{2}<\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}<a+\frac{\varepsilon}{2}$,所以当n>N时,恒有$\mid \frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a\mid <\frac{\varepsilon}{2}$(注意N是确定的).另外我们有(当n>N时)

  $\frac{x_n}{y_n}-a=\frac{x_{N+1}-ay_{N+1}}{y_n}+(1-\frac{y_{N+1}}{y_n})(\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a)$,

  故$\mid \frac{x_n}{y_n}-a\mid \leq\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid +\frac{\varepsilon}{2}$,

现取正整数N'>N,使当n>N'时,恒有

  $\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid <\frac{\varepsilon}{2}$,

于是,当n>N'时,恒有$\mid \frac{x_n}{y_n}-a\mid <\varepsilon$.

由此可知,$\lim\limits_{n\rightarrow \infty}\frac{x_n}{y_n}=a=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$.证毕.

注:条件3中换为$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=+\infty(或-\infty)$.,则结论任然成立(也就是极限都不存在)

转载于:https://www.cnblogs.com/Asika3912333/p/11422065.html

在使用Python来安装geopandas包时,由于geopandas依赖于几个其他的Python库(如GDAL, Fiona, Pyproj, Shapely等),因此安装过程可能需要一些额外的步骤。以下是一个基本的安装指南,适用于大多数用户: 使用pip安装 确保Python和pip已安装: 首先,确保你的计算机上已安装了Python和pip。pip是Python的包管理工具,用于安装和管理Python包。 安装依赖库: 由于geopandas依赖于GDAL, Fiona, Pyproj, Shapely等库,你可能需要先安装这些库。通常,你可以通过pip直接安装这些库,但有时候可能需要从其他源下载预编译的二进制包(wheel文件),特别是GDAL和Fiona,因为它们可能包含一些系统级的依赖。 bash pip install GDAL Fiona Pyproj Shapely 注意:在某些系统上,直接使用pip安装GDAL和Fiona可能会遇到问题,因为它们需要编译一些C/C++代码。如果遇到问题,你可以考虑使用conda(一个Python包、依赖和环境管理器)来安装这些库,或者从Unofficial Windows Binaries for Python Extension Packages这样的网站下载预编译的wheel文件。 安装geopandas: 在安装了所有依赖库之后,你可以使用pip来安装geopandas。 bash pip install geopandas 使用conda安装 如果你正在使用conda作为你的Python包管理器,那么安装geopandas和它的依赖可能会更简单一些。 创建一个新的conda环境(可选,但推荐): bash conda create -n geoenv python=3.x anaconda conda activate geoenv 其中3.x是你希望使用的Python版本。 安装geopandas: 使用conda-forge频道来安装geopandas,因为它提供了许多地理空间相关的包。 bash conda install -c conda-forge geopandas 这条命令会自动安装geopandas及其所有依赖。 注意事项 如果你在安装过程中遇到任何问题,比如编译错误或依赖问题,请检查你的Python版本和pip/conda的版本是否是最新的,或者尝试在不同的环境中安装。 某些库(如GDAL)可能需要额外的系统级依赖,如地理空间库(如PROJ和GEOS)。这些依赖可能需要单独安装,具体取决于你的操作系统。 如果你在Windows上遇到问题,并且pip安装失败,尝试从Unofficial Windows Binaries for Python Extension Packages网站下载相应的wheel文件,并使用pip进行安装。 脚本示例 虽然你的问题主要是关于如何安装geopandas,但如果你想要一个Python脚本来重命名文件夹下的文件,在原始名字前面加上字符串"geopandas",以下是一个简单的示例: python import os # 指定文件夹路径 folder_path = 'path/to/your/folder' # 遍历文件夹中的文件 for filename in os.listdir(folder_path): # 构造原始文件路径 old_file_path = os.path.join(folder_path, filename) # 构造新文件名 new_filename = 'geopandas_' + filename # 构造新文件路径 new_file_path = os.path.join(folder_path, new_filename) # 重命名文件 os.rename(old_file_path, new_file_path) print(f'Renamed "{filename}" to "{new_filename}"') 请确保将'path/to/your/folder'替换为你想要重命名文件的实际文件夹路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值