Dify.AI 用户直面会总结:Embedding 技术与 Dify 数据集设计/规划

Dify.AI 的直面会分享了 Embedding 技术如何减少 LLM 计算量,提高响应速度和降低成本。Dify 数据集设计包括自定义分段和 Q2Q 匹配模式,优化数据命中预期。未来规划包括多模型兼容、向量数据库优化和对话数据集收集。问答环节解答了数据集模式、文本分块、文档格式支持等问题,强调数据集描述的重要性和模型选择的策略。
摘要由CSDN通过智能技术生成

7 月 29 日晚,Dify 主创团队如约与社区朋友们线上直面交流,由 Dify 的数据集产品&架构负责人姜勇(Jyong)给大家分享在企业知识库嵌入 AI ChatBot 应用中最核心的 Embedding 技术概念和 Dify 数据集的设计和规划。我们还整理了本次会议中用户关心的问题,供大家阅读参考。

头图.jpg

📑 Embedding 技术的文本向量化

"Embedding"是一种将离散型变量(如单词、句子或者整个文档)转化为连续的向量表示的技术。 这个向量表示(Embedding)可以捕捉到离散型变量间的相似性和关系。这段话听起来很晦涩,但其实它的本质是特征性的收集,将事物所有的特征进行向量化,我们可以叫它叫特征工程。

目前市面上的 LLM 模型的 token 有长度限制,尽管现在 Claude2 支持 100K 的 token,可以直接分析大约 75000 字的文本,但是其分析时间长并且 token 昂贵的计费,目前用户还不能接受。在性能和成本的要求之下, Embedding 技术应运而生。我们将文本进行分段之后转化为向量,当用户提出相关问题时,搜索的内容会转换成向量,然后在向量数据库中搜索最相似的向量,匹配最相似的几个上下文,最后将上下文组成的 prompt 一起提供给模型。 这样不仅可以大大减少模型的计算量,提高响应速度,更重要的是降低成本,并丰富了模型的知识库。

📍 Dify 的数据集模式设计与规划

从数据集的整体模式出发,Dify 有如下的设计:
将文本进行自定义分段,用户自定义分隔符以及 token 大小,将文本分成多个串。Dify 目前用的是 ada002 模型,用户文档进行 embedding 后存入向量数据库。当用户在 App 端提问时会带着他的问题和上下文组成新的问题,然后匹配向量数据库里相似的段落,将这些内容组成 prompt 传到 LLM 并输出标准的回答。

10.1.jpg

Dify 数据集工作模式分为以下两种方式:

  • Dify 最近刚上线的 Q2Q 匹配模式,可大幅提高数据命中预期。 用户提出的问题会匹配到数据集里问题和段落,数据集基于用户的文档分成若干个分段,内容以 QA 形式储存在向量数据库。用户的问题会与在与向量库数据库里的问题进行相似度对比,完成后将匹配得到的答案直接返回给用户。问题和问题的匹配不管从语义还是从整体文本上都十分准确,这样可以很大程度提升文本的搜索精确度。这个功能的使用场景更适用于一些常用高频问题的回答,用户提出的问题需要在问答库里才能匹配到,问题和答案的具体内容可以进行动态调整。

  • 将文档段落直接存入 Dify 的线上数据库。用户提出的问题直接在文档中命中了一些段落并返回至模型生成回答。 由于用户短小的问题需要匹配一整段文档,召回率存在问题;文档窗口的切分可能会导致上下文语义的丢失。Dify 现在支持分段的编辑,用户不需要的文档内容可以做一些动态的调整。

10.2.jpg

关于 Dify 数据集功能的规划:

  • 基于 app 对话的数据集收集: Dify 将整理高质量的回复,将文本作为做 QA(问答)的切分。这会在 app 端聊天时起到缓存的作用,优化性能和减少与 GPT 的交互所需的 token 成本。

  • 多模型兼容: Dify 计划能够支持多种不同 LLM 的返回值。通过记录和缓存来自不同模型的回答,兼容多个返回值。如某一个问题 GPT4 的回答更好,就可以缓存到数据集里,用户在用 GPT3.5 提问相同问题的

<think>好的,我现在要回答用户关于在哪个环境中执行git clone命令来克隆langgenius/dify仓库的问题。首先,我需要理解用户的问题。他们想知道应该在什么环境下运行这个命令,比如本地开发环境、服务器,或者Docker容器之类的。 根据提供的引用内容,引用[2]提到在Gitee或GitCode上克隆Dify项目源码并启动Docker环境,所以可能涉及到Docker环境。但git clone本身是一个Git命令,通常在任何有Git安装的环境都可以执行,比如本地机器、服务器或者容器内。 接下来,我需要确认用户提到的langgenius/dify仓库具体指的是哪个平台。如果是在GitHub、Gitee或GitCode上,用户需要在支持Git的环境中操作。根据引用[2],Dify项目建议克隆源码后启动Docker环境,所以可能用户需要先克隆到本地,然后在Docker中运行。 另外,引用[4]提到了解决克隆失败的方法,比如调整postBuffer的大小,这可能需要在命令行终端或者Shell环境中执行。所以执行git clone的环境需要安装Git,并且网络通畅。 总结下来,用户需要在安装了Git的环境下执行该命令,无论是本地还是服务器。如果后续需要启动Docker,可能是在克隆之后的操作步骤。需要分步骤说明:首先在本地或服务器终端执行git clone,然后进入目录启动Docker。同时,如果遇到克隆问题,可能需要配置Git参数或检查网络。 还要注意引用中的示例,比如引用[2]的步骤是克隆后启动Docker,因此环境可能包括本地开发环境加上Docker环境。需要明确说明这两个步骤的不同环境需求。可能用户需要先在本地的开发环境中克隆仓库,然后在同一环境中使用Docker命令启动服务。 最后,生成相关问题时要围绕执行环境、常见错误处理、后续步骤等方面,帮助用户全面了解整个过程。</think>### 在哪种环境下执行 `git clone` 命令克隆 langgenius/dify 仓库? 执行 `git clone` 命令克隆仓库时,**需要在支持 Git 工具的命令行终端环境中操作**。具体环境可分为以下几种情况: 1. **本地开发环境** - 如果您的本地计算机已安装 Git(如 Windows 的 Git Bash、macOS 的 Terminal 或 Linux 的 Shell),可直接在终端中运行命令: ```bash git clone https://github.com/langgenius/dify.git ``` 克隆完成后,代码将保存在本地目录中,便于后续开发和调试[^2]。 2. **服务器环境** - 若需将仓库部署到远程服务器(如云服务器或虚拟机),需通过 SSH 连接到服务器并安装 Git,之后执行克隆命令。适用于生产环境部署或持续集成(CI/CD)流程。 3. **Docker 容器环境** - 根据引用[2],Dify 项目可能依赖 Docker 环境运行。此时需先克隆仓库到本地或服务器,再通过 Docker 命令启动服务: ```bash # 克隆仓库 git clone https://github.com/langgenius/dify.git cd dify # 启动 Docker 容器 docker-compose up -d ``` --- #### **常见问题注意事项** - **网络问题**:若克隆失败(如 `error: RPC failed`),可能是网络不稳定或 Git 缓冲区不足。可尝试以下命令调整配置后重试: ```bash git config --global http.postBuffer 524288000 # 扩大缓冲区 git clone https://github.com/langgenius/dify.git # 重新克隆[^4] ``` - **仓库地址验证**:确认仓库地址正确,且平台(GitHub/Gitee)可访问。例如,国内用户可优先使用 Gitee 镜像仓库加速克隆[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值