数据预处理的 Python 文件通常没有一个固定的命名规则,但是可以根据文件的功能和用途来命名。以下是一些常见的命名方式:
preprocess.py
- 直接表明文件用于数据预处理。data_cleaning.py
- 强调数据清洗的步骤。feature_engineering.py
- 如果文件主要涉及特征工程。data_transformation.py
- 强调数据转换或格式转换。data_preparation.py
- 表示数据准备阶段。data_normalization.py
- 如果文件主要进行数据标准化。data_augmentation.py
- 如果文件用于数据增强。dataset.py
- 用于创建和管理数据集。loader.py
- 如果文件主要负责数据加载。pipeline.py
- 如果文件实现了数据处理的管道。- utils.py-这些函数通常在多个地方被复用,"utils" 是 "utilities"(工具,实用程序)的缩写。
此外,如果你的项目中有多个数据预处理步骤,可能还会看到如下命名:
preprocess_step1.py
,preprocess_step2.py
, 等等。preprocess_train.py
,preprocess_test.py
- 区分训练数据和测试数据的预处理。
选择文件名时,最好遵循项目的命名约定,确保文件名清晰、简洁,并且能够反映文件内容的主要功能。这有助于其他开发者或未来的你快速理解文件的用途。