1.题目
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
Subscribe to see which companies asked this question.
2.思路
DP思想,设Tree[n]表示序列{1,2.。。n}构成的二叉树数目,那么显然问题可以分解为将每个数当作root,求所有情况的和。当把i当作root时,二叉树数目为Tree[i-1]*Tree[n-i].就是左子数数目和又子树数目相乘。那么状态转移方程为:Tree[n]=Tree[0]*Tree[n-1]+Tree[1]*Tree[n-2]+....+Tree[n-1]*Tree[0] ;初始条件为:Tree[0]=Tree[1]=1;
3.代码
int numTrees(int n) {
int* Tree=new int[n+1]();//调用默认构造函数初始化为0
Tree[0] = Tree[1] = 1;
for(int i=2; i<=n; ++i) {
for(int j=1; j<=i; ++j) {
Tree[i] += Tree[j-1] * Tree[i-j];
}
}
return Tree[n];
}