LeetCode 96.Unique Binary Search Trees
Given an integer n, return the number of structurally unique BST’s (binary search trees) which has exactly n nodes of unique values from 1 to n.
Example 1:
Input: n = 3
Output: 5
题意:给出数字 n,求 1-n 能组成多少个不同的 BST?
思路: BST的基本性质:根大于左孩子,小于右孩子。
对于 1-n,轮流选取一个作为根,构造一颗 BST,那么将序列分为了左序列,根,右序列,且个数 = 左序列的个数 * 右序列的个数,如此递归划分。在上述构建的过程中,由于根的值不同,因此我们能保证每棵二叉搜索树是唯一的。
由此可见,原问题可以分解成规模较小的两个子问题,且子问题的解可以复用。因此,我们可以想到使用动态规划来求解本题。
class Solution {
public:
// 计算 start,end 区间内所有的 BST 的个数
int getNum(int start,int end){
if(start > end) return 0;
if(start == end) return 1;
int ans = 0;
// 遍历所有的根节点
for(int i = start;i <= end;++i){
int l = max(1,getNum(start,i-1));
int r = max(1,getNum(i+1,end));
ans += l*r;
}
return ans;
}
int numTrees(int n) {
int a[] = {0,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190};
int b[20] = {0};
b[0] = 1;
b[1] = 1;
// dp 填表过程
for(int i = 2;i<=n;++i) // 当长度为 i 时可构成的 BST 的数目
for(int j = 1;j <= i;++j ){
b[i] += b[j-1] * b[i-j];
}
return b[n];
// return a[n];
}
};