LeetCode96.Unique Binary Search Trees

LeetCode 96.Unique Binary Search Trees

Given an integer n, return the number of structurally unique BST’s (binary search trees) which has exactly n nodes of unique values from 1 to n.
在这里插入图片描述

Example 1:

Input: n = 3
Output: 5

题意:给出数字 n,求 1-n 能组成多少个不同的 BST?
思路: BST的基本性质:根大于左孩子,小于右孩子。
对于 1-n,轮流选取一个作为根,构造一颗 BST,那么将序列分为了左序列,根,右序列,且个数 = 左序列的个数 * 右序列的个数,如此递归划分。在上述构建的过程中,由于根的值不同,因此我们能保证每棵二叉搜索树是唯一的。

由此可见,原问题可以分解成规模较小的两个子问题,且子问题的解可以复用。因此,我们可以想到使用动态规划来求解本题。

class Solution {
public:

    // 计算 start,end 区间内所有的 BST 的个数
    int getNum(int start,int end){
        if(start > end) return 0;
        if(start == end)    return 1;

        int ans = 0;
        // 遍历所有的根节点
        for(int i = start;i <= end;++i){
            int l = max(1,getNum(start,i-1));
            int r = max(1,getNum(i+1,end));
            ans += l*r;
        }
        return ans;
    }

    int numTrees(int n) {
        int  a[] = {0,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190};
        int b[20] = {0};
        b[0] = 1;
        b[1] = 1;

        //  dp 填表过程
        for(int i = 2;i<=n;++i)     // 当长度为 i 时可构成的 BST 的数目 
        for(int j = 1;j <= i;++j ){
            b[i] += b[j-1] * b[i-j];
        }

        return b[n];
        // return a[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值