机器学习理论
文章平均质量分 88
diligent_321
毕业于西电人工智能学院,硕士学历,目前工作方向为计算机视觉技术。
展开
-
最大似然损失和交叉熵损失函数的联系
在利用深度学习模型解决有监督问题时,比如分类、回归、去噪等,我们一般的思路如下: 信息流forward propagation,直到输出端; 定义损失函数L(x, y | theta); 误差信号back propagation。采用数学理论中的“链式法则”,求L(x, y | theta)关于参数theta的梯度; 利用最优化方法(比如随机梯度下降法),进行参数更新; 重复步骤3...原创 2016-11-10 14:26:47 · 14299 阅读 · 6 评论 -
SVM的原问题和对偶问题模型
这两天,我翻开沉压已久的学习笔记,看到了当初总结的SVM学习心得,为了避免不小心弄丢了,就在这里重新记录一下吧,希望对初学机器学习理论并热爱公式推导的朋友有所帮助。SVM作为一种经典的机器学习算法,在处理“小样本”问题时效果非常显著。本文主要分成三大部分,第一部分介绍一些基本知识,这些知识在SVM的公式推导过程中会用到,所以最先介绍。第二部分针对数据集线性可分的情况,推导SVM的原问题和对偶问题表达原创 2016-11-29 18:12:59 · 12216 阅读 · 0 评论 -
人工特征之SIFT和HOG
文章目录1 SIFT(局部特征)1.1 特征点检测1.2 特征点描述1.3 特征点匹配2 HOG(全局特征)2.1 特征描述子2.2 HOG特征提取步骤计算机视觉相关的任务都需要先提取特征,然后基于所提取的特征做分类、分割、视觉问答等任务。现在主流的提取特征的方法,都是采用神经网络自动提取对任务起作用的特征,使用人工设计的特征已经成为过去时了。然而,笔者认为,对于每一个算法,找准它的细分领域,...原创 2018-12-12 10:45:43 · 5779 阅读 · 1 评论 -
卷积神经网络概念Q&A
1 如何计算cnn中某一层的感受野大小?回答:对于cnn中的每一个神经元,它都表征了输入图像的局部区域的信息,“感受野”指的是某一个神经元对应到输入图像的尺寸。我们都知道,越深的网络层对应的感受野越大,比如我们想知道第n层的神经元在输入图像上的感受野,那么不妨把第iii层作为“伪输入图像”,并且记该神经元在第iii层的感受野大小为RFi,其中i<=1<=nRF_{...原创 2019-01-11 18:27:37 · 488 阅读 · 0 评论