我最近在文章结尾处加入了许多公式,如,
,
等,这个文章就讲讲它们的原理。
1.简短公式
1.me^iθ=m isinθ+m cosθ
可以理解为:模*e^i*角度=模*isin角度(Y坐标)+模*cos角度(X坐标)
可以将矢量转换为复平面坐标
这个很好理解,因为是摘录的:在模为1,角度为180°(π)的时候
变成了欧拉公式,而一个简单的提取公因数就能变成这个形态:
2.e=lim x →∞ (1+1/x)^x
可以理解为:e=若x极限趋向于∞(1+1/x)^x
这是摘抄自百度百科里,是e的定义
3.∑(∞)(i=1)1/2^i=1
可以理解为:从i=1到i=∞连续相加1/2^i=1
这里引用的是基于收敛函数的对芝诺问题的解答,也就是说飞矢还是会动,你也能走进家里
这里我列举前十个项,相加已经及其接近1了:
0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625 0.001953125 0.0009765625
0.5+0.25+0.125+0.0625+0.03125+0.015625+0.0078125+0.00390625+0.001953125+0.0009765625=0.9990234375≈1
4.∏(x)(i=1)i=x!
只是扩展了一下非常简单
2.长公式
1.lim x→1 x=0.99...=3*3/1=1
可以理解为:无限趋向于1(就是1)的数=0.99...=3*1/3=1
大部分人应该都能理解,毕竟0.33...=1/3,0.33..*3=0.99...,可这时就有杠精了:
Q:1/3≠0.33...,而是≈0.33...
A:1/3≈0.3333而不是0.33...,而且这个公式可以化为3/3,不就是一吗
Q:你这个不精准,1-0.99...=0.00...1
A:0.00...1无限接近于0
2.㏒x y+㏒x z=㏒x yz=>x^(㏒x y+㏒x z)=yz
一种计算乘法的公式
可以理解为:㏒x y+㏒x z=㏒x yz推导出x^(㏒x y+㏒logx z)=yz
抄的,没啥好说的
3.结尾
从这一篇文章开始,我会开始讲一点数学的内容,谢谢大家支持