解释我的结尾公式

我最近在文章结尾处加入了许多公式,如\log_xy+\log_xz=\log_xyz\Rightarrow x^{\log_xy+\log_xz}=yz\lim_{x\rightarrow1}x=0.99...=3*\frac13=1\sum_{i=1}^{Infinity}\frac1{2^i}=1等,这个文章就讲讲它们的原理。

1.简短公式

1.me^iθ=m isinθ+m cosθ

m_{odule}e^{i\theta}=m\,i\sin\theta+m\,\cos\theta

可以理解为:模*e^i*角度=模*isin角度(Y坐标)+模*cos角度(X坐标)

可以将矢量转换为复平面坐标

这个很好理解,因为是摘录的:在模为1,角度为180°(π)的时候e^{i\pi}+1=i\sin\pi+\cos\pi+1=0+\,-1+1=0\Rightarrow e^{i\pi}+1=0

变成了欧拉公式,而一个简单的提取公因数就能变成这个形态:

m_{odule}e^{i\theta}=m(i\sin\theta+\cos\theta)= m\,i\sin\theta+m\,\cos\theta

2.e=lim x →∞ (1+1/x)^x

e=\lim_{x\rightarrow Infinity}(1\tfrac{1}{x})^x

可以理解为:e=若x极限趋向于∞(1+1/x)^x

这是摘抄自百度百科里,是e的定义

3.∑(∞)(i=1)1/2^i=1

\sum_{i=1}^{Infinity}\frac1{2^i}=1

可以理解为:从i=1到i=∞连续相加1/2^i=1

这里引用的是基于收敛函数的对芝诺问题的解答,也就是说飞矢还是会动,你也能走进家里

这里我列举前十个项,相加已经及其接近1了:

0.5   0.25   0.125   0.0625   0.03125   0.015625   0.0078125   0.00390625   0.001953125   0.0009765625

0.5+0.25+0.125+0.0625+0.03125+0.015625+0.0078125+0.00390625+0.001953125+0.0009765625=0.9990234375≈1

4.∏(x)(i=1)i=x!

\prod_{i=1}^xi=x!

只是扩展了一下非常简单

2.长公式

1.lim x→1 x=0.99...=3*3/1=1

\lim_{x\rightarrow1}x=0.99...=3*\frac13=1

可以理解为:无限趋向于1(就是1)的数=0.99...=3*1/3=1

大部分人应该都能理解,毕竟0.33...=1/3,0.33..*3=0.99...,可这时就有杠精了:

Q:1/3≠0.33...,而是≈0.33...

A:1/3≈0.3333而不是0.33...,而且这个公式可以化为3/3,不就是一吗

Q:你这个不精准,1-0.99...=0.00...1

A:0.00...1无限接近于0

2.㏒x y+㏒x z=㏒x yz=>x^(㏒x y+㏒x z)=yz

\log_xy+\log_xz=\log_xyz\Rightarrow x^{\log_xy+\log_xz}=yz

一种计算乘法的公式

可以理解为:㏒x y+㏒x z=㏒x yz推导出x^(㏒x y+㏒logx z)=yz

抄的,没啥好说的

3.结尾

从这一篇文章开始,我会开始讲一点数学的内容,谢谢大家支持

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值