完全等于可持久化动态开点线段树。
例题:Luogu P4735 最大异或和
建可持久化01Trie。
每次建一个新版本把序列的每个前缀和插进去。
添加操作亦如此。
查询的话就看每个数位取反的一侧在01Trie的这个区间内是否出现过(也就是\(sum\)是否相等),然后跳儿子。
这里蕴含了高位贪心的思想。
#include<bits/stdc++.h>
using namespace std;
const int N=3e7;
int read(){int x=0;char c=getchar();while(!isdigit(c))c=getchar();while(isdigit(c))x=x*10+c-48,c=getchar();return x;}
int n,m,cnt,root[N],son[N][2],d[31],sum[N];char s[3];
int Get(){scanf("%s",s);return s[0]=='A';}
void split(int p)
{
int i,len=0;
for(;p;d[++len]=p&1,p>>=1);
for(i=len+1;i<=30;++i) d[i]=0;
}
void update(int &p,int pre)
{
sum[p=++cnt]=sum[pre]+1;
for(int i=30,t=p;i;--i) son[t][d[i]^1]=son[pre][d[i]^1],pre=son[pre][d[i]],sum[t=son[t][d[i]]=++cnt]=sum[pre]+1;
}
int query(int l,int r)
{
int ans=0,i;
for(i=30;i;--i)
if(sum[son[r][d[i]^1]]^sum[son[l][d[i]^1]]) ans|=1<<i-1,l=son[l][d[i]^1],r=son[r][d[i]^1];
else l=son[l][d[i]],r=son[r][d[i]];
return ans;
}
int main()
{
int i,sum=0,l,r,x;
n=read()+1,m=read(),split(0),update(root[1],root[0]);
for(i=2;i<=n;++i) split(sum^=x=read()),update(root[i],root[i-1]);
for(i=1;i<=m;++i)
if(Get()) split(sum^=x=read()),update(root[n+1],root[n]),++n;
else l=read(),r=read(),x=read(),split(x^sum),printf("%d\n",query(root[l-1],root[r]));
return 0;
}